

Futterberechnung für Schweine

28. Auflage

Stand August 2022

LfL-Information

Impressum

Herausgeber: Bayerische Landesanstalt für Landwirtschaft (LfL)

Vöttinger Straße 38, 85354 Freising-Weihenstephan

Internet: www.LfL.bayern.de

Redaktion: Institut für Tierernährung und Futterwirtschaft

Prof.-Dürrwaechter-Platz 3, 85586 Poing E-Mail: Tierernaehrung@LfL.bayern.de

Telefon: 08161-8640-7401

28. unveränderteAuflage: Januar 2024

Druck: Printworld, Dresden

Schutzgebühr: 10,00 Euro © LfL, alle Rechte beim Herausgeber

Inhaltsverzeichnis

Vorbemerkung und Neuerungen	5
Abkürzungsverzeichnis	6
Grundlagen der Schweinefütterung	8
Weender Futtermittelanalyse und modifizierte Systeme	8
Energieschätzgleichungen	9
Fütterung und Tierwohl	
Beurteilung der Nahrungskonkurrenz	14
Versorgungsempfehlungen und Richtwerte	15
Jungsauenaufzucht	15
Eberaufzucht / Eber	17
Zuchtsauenfütterung	
Fütterung tragender SauenFütterung säugender Sauen	
Ferkelfütterung	
Mastschweinefütterung	
Kennzahlen der Schweinefütterung	
Standardisierte praecaecale Verdaulichkeiten von Rohprotein und Aminosäuren (GfE 2006 DLG 2014, Grainup 2016*)	
Richtwerte für Vitamin-und Spurenelementzusätze je kg Alleinfutter bei 88% TM, stand September 20	1942
Mineralfutterempfehlung für Zuchtsauen, Ferkel und Mastschweine	43
Gehaltswerte der Futtermittel (Grundlage Zifo2, Stand 09/2019)	44
1. Grünfutter	46
2. Silagen	46
3. Heu, Stroh, Cobs, Grünmehl	47
4. Typische Eiweißfutter	48
5. Getreide- und Nebenprodukte	50
6. Brauerei- und Brennereiprodukte	51
7. Rüben- und Nebenprodukte	52
8. Kartoffel- und Nebenprodukte	52
9. Molkereiprodukte	54
10. Weitere Nebenprodukte aus der Lebensmittelverarbeitung und Energiegewinnung	55
11. Typische Faserträger	55
12. Mineral- und Ergänzungsfutter	56
13. Aminosäuren	57
14. Ölsaaten	58
15. Öle	58

Einsatz von Futtermitteln (Orientierungshilfe)	59
Futterzusatzstoffe	61
Futtersäuren (Auszug aus den Firmensortimenten), Stand 01/2021	61
Nicht - Stärke - Polysaccharide (NSP) und Enzyme	66
Verdaulicher Phosphor und Phytaseaktivität	67
Mikrobielle Phytase	68
Futtermittelqualität, -eigenschaften und -hygiene	69
Säurebindungsvermögen (SBV) im Schweinefutter	
Kationen-Anionen-Bilanz bei Zuchtsauen	
Mikrobiologische Beschaffenheit von Futtermitteln	71
Verwendbarkeit	71
Faustzahlen Fütterung und Wasserversorgung	77
Beurteilungswerte für Tränkwasser	
Checklisten und Beratungsunterlagen	80
Checkliste "Futterhygiene"	
Checkliste "Tränkwasser für Mastschweine"	81
Stärken-/Schwächen-/Profil-Fütterung	82
Futteruntersuchung	83
Grundsätzliches zur Futteruntersuchung	83
Futteruntersuchungskosten im LKV-Labor in Grub (Stand 01/2021)	84
Futteruntersuchung mit webFuLab	86
Futteruntersuchungstoleranzen	87
Nährstoffbilanzen – Vorgehen bei der Saldierung	90
Nährstoffgehalte bei unterschiedlichen Fütterungsverfahren	93
Standardnährstoffausscheidungen DLG 2014/2019	94
Gesamtbetrieblicher Nährstoffkreislauf	97
Richtwerte für Rohprotein- und Aminosäuregehalte bei Getreide	98
Rund um die Schweinehaltung	99
Mögliche Mastschweineplätze pro ha bei ausgeglichener Bilanz nach Nährstoffausscheidungen	99
Faustzahlen Haltung	100
Faustzahlen Betriebswirtschaft - Ferkelerzeugung	102
Faustzahlen Betriebswirtschaft – Schweinemast	104
Abgrenzung zwischen Landwirtschaft und Gewerbe	106
Gesetzliche Rahmenbedingungen der Schweinehaltung	107

Vorbemerkung und Neuerungen

Grundlage einer bedarfsgerechten, umweltschonenden, tiergesundheitsfördernden, tierwohlgerechten und wirtschaftlichen Fütterung sind Kenntnisse über den Energie- und Nährstoffbedarf der Tiere, den Verhaltensansprüchen der Schweine und die Gehalte an Energie, verfügbaren Nährstoffen und Tierwohlwirkungen in den Futtermitteln.

Neue wissenschaftliche Erkenntnisse, aktuell erarbeitete Versuchsergebnisse und Beratungserfahrungen zur Fütterung sowie die gestiegenen biologischen Leistungen von Schweinen haben uns bewogen, die LfL-Information Futterberechnung für Schweine zu überarbeiten und die 27. Auflage zu erstellen. Stellvertretend kann die Anpassung der praecaecal verdaulichen Aminosäuren von Getreide genannt werden, die auf den wissenschaftlichen Erkenntnissen des Grainup-Projektes der Universität Hohenheim beruht. Teilweise wird bei den Fütterungsempfehlungen auf die Darstellung von Rohproteingehalten verzichtet, da Schweine keinen eigentlichen Rohproteinbedarf, sondern einen Bedarf an essentiellen Aminosäuren aufweisen. Um auch Schweine mit hohen Leistungen bedarfsgerecht versorgen zu können, sind die Empfehlungen zur Eiweißversorgung immer auch auf der Stufe der praecaecal verdaulichen Aminosäuren angegeben.

Die zunehmenden Auswirkungen der rechtlichen Rahmenbedingungen – insbesondere der Umweltgesetzgebung – auf die Schweinehaltung bewegten uns zu einer inhaltlichen Erweiterung dieses Themenkomplexes. Auch wird erstmals das Thema "Gesamtbetrieblicher Nährstoffkreislauf" einschließlich Stallsaldierung aufgezeigt, welches in der Zukunft für die schweinehaltenden Betriebe eine bedeutende Rolle einnehmen wird.

Wie bei der vorherigen Auflage bilden die Vorgaben der Gesellschaft für Ernährungsphysiologie (GfE) aus 2006, die DLG-Empfehlungen zur Sauen- und Ferkelfütterung (2008) sowie die DLG-Empfehlungen für eine erfolgreiche Mastschweinefütterung (2010) die Basis für die Nährstoff-, Mineralstoff- und Wirkstoffempfehlungen. Die Versorgungsempfehlungen bzw. Einsatzempfehlungen beinhalten ausreichende Sicherheitszuschläge. Der Bereich Tierwohl und Fütterung basiert auf den DLG-Merkblättern 463 und 464 und den Erfahrungen im Staatsgut Schwarzenau und in der Praxis.

Alle aufgeführten Empfehlungen sind als Orientierung zu betrachten, im Einzelfall sind Abweichungen von diesen Vorgaben denkbar und sinnvoll.

Hinweis:

Die vorliegende Ausgabe kann im Internetangebot der LfL abgerufen werden.

Verantwortliche:

Fütterung Dr. R. Puntigam, P. Riesinger, M. Schäffler, Dr. W. Preißinger,

Dr. K. Harms (alle ITE)

Ökonomik N. Schneider (İBA)
Haltung Dr. C. Jais (ILT)
Emissionen K. Bonkoss (ILT)

Abkürzungsverzeichnis

ADFom acid detergent fibre, Säure-Detergenzien-Faser acid detergent lignin, Säure-Detergenzien-Lignin

AS Aminosäuren

Eiweiß/Protein besteht aus Aminosäuren; Leitaminosäuren sind Lysin, Methionin,

Threonin und Tryptophan

BMEL Bundesministerium für Ernährung und Landwirtschaft

Ca Kalzium

CCM Corn-Cob-Mix, Kornspindelgemisch

CI Chlor Cys Cystein

DCP Dicalciumphosphat

DOM Deutsche Landwirtschafts-Gesellschaft
verdauliche (digestible) Organische Masse
verdaulicher (digestible) Organischer Rest
verdauliche (digestible) Organische Masse

DXL verdauliches (digestible) RohfettDXP verdauliches (digestible) Rohprotein

FAF Ferkelaufzuchtfutter

GfE Gesellschaft für Ernährungsphysiologie IE Internationale Einheit (bei Vitaminen)

Ile Isoleucin

J Joule (physikalische Einheit für Energie, früher Kalorie, 1 cal = 4,186 J)

KABKationen-Anionen-BilanzKBEKoloninebildende Einheiten

KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V.

Leu Leucin

LM Lieschkolbensilage Lebendmasse

LMZ Lebendmassezuwachs

Lys Lysin K Kalium

ME metabolisierbare/umsetzbare Energie

Die Energie bestimmt in Verbindung mit der Futteraufnahme weitgehend die Leis-

tung. Die anderen Futterinhaltsstoffe sind entsprechend anzupassen.

Met Methionin

M+C Methionin und Cystein

MCFA middle-chain-fatty-acids, mittelkettige Fettsäuren

MCP Monocalciumphosphat

Mg Magnesium

MHA, Methionin-Hydroxy-Analog

MJ Mega-Joule (1 MJ = 1.000 KJ = 1.000.000 J)

Na Natrium

MKS Maiskornsilage

NIRS Nah-Infrarot-Reflexions-Spektroskopie

aNDFom neutral detergent fibre, Neutral-Detergenzien-Faser

P Phosphor P_2O_5 Phosphat

p. p. post partum (nach der Geburt)

pcv (dvd) praecaecal verdaulich (dünndarmverdaulich)

standardisierte Dünndarmverdaulichkeit von Rohprotein und Aminosäuren; Verdaulichkeit der Nährstoffe bis zum Ende des Dünndarmes, also vor Erreichen des Blinddarmes (Caecum). Gemessene Werte bzw. berechnet aus verdaulichem

Rohprotein und pcv-Klassen.

RES Rapsextraktionsschrot

S Schwefel

SBV Säurebindungsvermögen

Das SBV sollte im Ferkel-, Säuge- und Vormastfutter < 700 mmol/kg liegen.

SES Sojaextraktionsschrot

St Stärke
Thr Threonin

TF Trockenfutter (mit 88 % Trockenmasse)

TM Trockenmasse
Trp Tryptophan

TZ Tägliche Zunahme

Val Valin

VDLUFA Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstal-

ten

vP verdaulicher Phosphor

Die Optimierung der Fütterung auf verdaulichen P ermöglicht eine exaktere P-

Versorgung und reduziert die P-Ausscheidungen.

vP Ph verdaulicher Phosphor Phytase ist die Menge des verdaulichen Phosphors, der

bei Einsatz von Phytase angesetzt werden kann.

XA Rohasche
XF Rohfaser
XL Rohfett
XP Rohprotein
Z Zucker

Grundlagen der Schweinefütterung

Weender Futtermittelanalyse und modifizierte Systeme

(Beispiel Weizenkleie, Trockenmasse =100)

	Weender	Weender/ van Soest			van Soest + zusätzliche Analysen
100%	Rohasche	Rohasche			Rohasche
	Rohprotein	Rohprotein		stoffe	Rohprotein
75%	Rohfett	Rohfett		Zellinhaltsstoffe	Rohfett
		organischer Rest ²		Zellir	Stärke
					Zucker
	N-freie				org. Rest
50% 25%	Extraktstoffe ¹	Hemi- cellulose ¹		aNDFom, Gerüstsubstanzen	Hemi- cellulose ¹
		Cellulose ¹		om,	Cellulose ¹
	Rohfaser	Condida	ADFom	NDF.	Ochalose
0%		ADL	A		ADL

¹berechnet durch Differenz.

ADL, acid detergent lignin, Säure-Detergenzien-Lignin; ADFom, acid detergent lignin, Säure-Detergenzien-Lignin; aNDFom, neutral detergent fibre, Neutral-Detergenzien-Faser; DOS, verdauliche Organische Substanz; DXP, verdauliches Rohprotein; DXL, verdauliches Rohfett; St, Stärke; Z, Zucker.

ADFom - ADL = Cellulose aNDFom - ADFom = Hemicellulose

²Berechnung organischer Rest = DOS-DXP-DXL-St-Z.

Energieschätzgleichungen

Berechnung der ME Schwein

Unterscheidung in Einzelfuttermittelformel (EFF) und Mischfuttermittelformel (MFF) zur Ermittlung des Energiegehaltes

Standardgleichung – Einzelfutter auf Basis der verdaulichen Nährstoffe (GfE 2006)

ME_s, MJ =

0,0205 x DXP (g)

+ 0,0398 x DXL (g)

+ 0,0173 x St (g)

+ 0,0160 x Z (g)

+ 0,0147 x (DOS - DXP - DXL - St - Z) (g)

Berechnungsbeispiel Weizenkleie

ME _s , MJ/kg =		8,64
0,0205 x DXP (g)	0,0205 x (0,65 x 160)	2,13
+ 0,0398 x DXL (g)	+ 0,0398 x (0,56 x 38)	0,85
+ 0,0173 x St (g)	+ 0,0173 x 131	2,27
+ 0,0160 x Z (g)	+ 0,0160 x 56	0,90
+ 0,0147 x (DOS - DXP - DXL - St - Z) (g)	+ 0,0147 x (482 - (0,65 x 160) - (0,56 x 38) - 131 - 56)	2,49

Sondergleichung – Mischfuttergleichung auf Basis von Rohnährstoffen (GfE 2008) (Schätzfehler: + 0,25 MJ ME_s/kg TM)

ME	:s (MJ) =	*Organischer Rest =
	0,021503 x XP (g)	OS (TM-XA)
+	0,032497 x XL (g)	- XP
-	0,021071 x XF (g)	- XL
+	0,016309 x St (g)	- XF
+	0,014701 x Organischer Rest* (g)	- St

XP, Rohprotein; XL, Rohfett; XF, Rohfaser; St, Stärke; OS, Organische Substanz; TM, Trockenmasse; XA, Rohasche.

Mischfutterformel nur gültig für Mischfutter mit:

Rohprotein 150 bis 250 g/kg TM

Rohfett \leq 60 g/kg TM Rohfaser \leq 80 g/kg TM

D, verdaulich; XP, Rohprotein; XL, Rohfett; St, Stärke; Z, Zucker; OS, Organische Substanz; XL, Rohfett.

Fütterung und Tierwohl

Die energie- und nährstoffangepasste Fütterung von Schweinen trägt wesentlich zur Gesunderhaltung unter reduzierten Nährstoffausscheidungen (speziell Stickstoff und Phosphor) bei. Futter und Fütterung haben neben der Energie-, Nähr-, Mineralstoff- und Wirkstoffversorgung weitreichenden Einfluss auf die Umwelt- und Klimawirkung in der Schweinefleischerzeugung.

Zusätzlich gewinnt ebenfalls der Effekt der Rationsgestaltung auf das Wohlbefinden bzw. das Tierwohl der Schweine sehr stark an Bedeutung. Die Balance zwischen den Bedürfnissen von Tieren (zum Beispiel Fressen, Bewegen, Beschäftigen, Ruhen) und der Möglichkeit diese zu befriedigen, kann im weiteren Sinn als Tierwohl verstanden werden. Tierhaltung per se hat für die gehaltenen Tiere immer unvermeidbare Einschränkungen zur Folge, jedoch gilt es diese so gering wie möglich zu halten. Zur Förderung von Tierwohl ist es daher die Aufgabe der Nutztierhalter ein optimales Gleichgewicht zwischen Nutztier, Haltungsumwelt sowie Futter und Fütterung zu schaffen.

Futter und Fütterung nehmen eine Schlüsselrolle bezüglich Wohlbefinden und Verhalten beim Schwein ein.

Dem DLG-Merkblatt 463 (Quelle: Fütterung und Tierwohl beim Schwein Teil A: Futter, Fütterung und Faserstoffversorgung) sind vielfältige fütterungsbedingte Maßnahmen zur Erhaltung und Verbesserung von Tierwohlindikatoren zu entnehmen. So spielen verschiedene Futtervorlagestrategien eine wichtige Rolle, die folglich veranschaulicht werden sollen:

- Wirkung von zusätzlichen Strategien und dem Milchangebot durch technische Anlagen bei hohen Ferkelzahlen
- Wirkungen von Futtervorlagestrategien- und -technik auf Futteraufnahme und Verdauung
- Wirkung der Gestaltung von Futterwechseln zwischen Haltungsabschnitten
- Höhere Absetzgewichte der Ferkel durch eine frühzeitige Futtergewöhnung und -aufnahme in der Säugephase erleichtern ein gleichmäßiges Weiterfressen nach dem Absetzen
- Futter- und Wasserdarreichungsform möglichst nicht ändern
- Abgestimmte Rohwarenzusammensetzung sowie energie- und n\u00e4hrstoffangepasste Rationskalkulation
- Fließende Übergänge zwischen den Fütterungsphasen durch mehrtägige Überschneidung
- Anwendung von Futtermittelzusatzstoffen (z. B. Säuren, Prä- oder Probiotika) zur Unterstützung der Nährstoffverdauung und Gesunderhaltung
- Wirkungen der Futtervorlagestrategien zur Erhöhung des Reizumfeldes

Zusätzlich nehmen auch die Wasserversorgung (Technik, Druck, Wassertemperatur etc.), Futterund Fütterungshygiene (DLG-Merkblatt 464; Quelle: Fütterung und Tierwohl beim Schwein Teil B: Wasserversorgung und Futterhygiene) sowie die Vermahlung der Rationsbestandteile, d.h. die Futterstruktur, eine wichtige Rolle ein. Im Hinblick auf den Einfluss von Einzelfuttermittel auf Aspekte des Tierwohls soll im speziellen folglich auf Faserfuttermittel eingegangen werden.

Die Stoffgruppe der Faser zeichnet sich durch einen sehr heterogenen und komplexen Aufbau aus und lässt sich Großteils in folgende Hauptkomponenten untergliedern: Zellulose, Hemizellulose, Lignin und Pektin. Speziell die Pflanzenart und das Vegetationsstadium der Pflanzen, sowie technologische Produktionsschritte im Zuge der Aufbereitung, üben den größten Einfluss auf deren Zusammensetzung und Wirkung aus.

Die Herkunft von Faser ist sehr vielfältig und auch entscheidend über deren Wirkung. Neben dem Einsatz von klassischen Lignozellulosen (aufbereitete Nebenprodukte der Holz- und Papierindustrie) und Grüngut (Luzernepellets) fließen auch eine Vielzahl an Nebenprodukten der Lebensmittelindustrie in heimische Schweinetröge. Als wichtigste Vertreter können hierbei Kleien (Nebenprodukte der Müllerei) sowie die Trockenschnitzel (Nebenprodukte der Zuckergewinnung), wie auch Trester (Nebenprodukte der Saftgewinnung) und Schalen (Soja-, Sonnenblumenschalen und Dinkelspelzen) genannt werden.

Neben dem Effekt der Herkunft und der Verarbeitung auf die chemische Zusammensetzung kann ebenfalls der Effekt auf die physikalische Beschaffenheit der Faser folglich beispielhaft veranschaulicht werden. Zusätzlich zu den bedeutendsten Analysenparametern (Rohfaser, XF; Neutral-Detergenzien-Faser nach Amylasebehandlung und Veraschung, aNDFom; Säure-Detergenzien-Faser nach Veraschung (ADFom), Säure-Detergenzien-Faser Lignin nach Veraschung (ADLom) wir ebenfalls der Gehalt an Gesamtfaser (TDF) veranschaulicht. Die Gesamtfaser lässt sich wiederum in den löslichen (SDF) und unlöslichen Teil (IDF) charakterisieren wobei sich speziell der lösliche Anteil durch eine gesteigerte Wasserbindungskapazität (WBC) und einem gesteigerten Quellvermögen (SwP) auszeichnet.

Die WBC beschreibt, dass z.B. die Trockenschnitzel 18,6 kg Ihres eigenen Gewichtes (pro kg TM) an Wasser binden können. Die Angaben des Quellevermögens veranschaulicht, dass Trockenschnitzel durch das Einwirken von Wasser um das 10-fache aufquellen.

Chemische (in g / kg TM) und physikalische Charakterisierung von ausgewählten Faserfuttermitteln

THREE									
Faserfuttermittel	XF	aNDFom	ADFom	ADLom	SDF	IDF	TDF	WBC	SwP
Trockenschnitzel	153	317	196	87	163	474	637	18,6	963
Lignocellulose	559	919	757	329	13	933	945	6,3	150
Sojabohnenschale	301	562	388	70	70	585	654	6,4	263
Weizenkleie	145	585	181	70	34	579	612	5,1	55
Weizenstroh	396	826	508	218	15	838	853	7,8	52

Quelle: Slama et al. 2019

Neben der vielfältigen Zusammensetzung und der physikalischen Wirkung der Faser kann auch die Wirkung derer im Tier als sehr vielseitig betrachtet werden, wie folgende Abbildung veranschaulicht:

Quelle: Grünewald und Preißinger, Forum angewandte Forschung in der Rinder- und Schweinefütterung, 2014

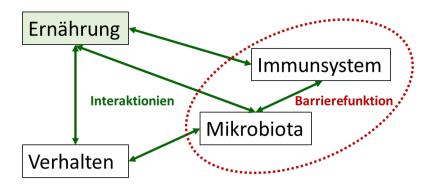
Aus diesem Grund sind in der Tierschutz-Nutztierhaltungsverordnung (TierSchNutztV) auch rechtliche Vorgaben für eine bedarfsgerechte Versorgung mit Rohfaser - jedoch nur bei tragenden Sauen - festgesetzt. Nach § 30 Abs. 6 der TierSchNutztV ist ein Rohfasergehalt von mindestens 8 % in der Trockensubstanz im Alleinfutter oder eine tägliche Aufnahme von mindestens 200 g Rohfaser pro Tier bis eine Woche vor dem voraussichtlichen Abferkeltermin sicherzustellen.

Demgegenüber sind für säugende Sauen, bzw. Ferkel und Mastschweine keine rechtlichen Mindestgehalte an Faser gefordert, wenngleich aus ernährungsphysiologischer Sicht die Versorgung mit Rohfaser auch bei diesen Tierkategorien wesentlich zur Gesundheit, Leistungsfähigkeit und gesteigertem Tierwohl beiträgt.

Durch die gezielte Faserversorgung kann speziell beim Ferkel die Gefahr des Auftretens von Absetzdurchfall reduziert werden. Darüber hinaus kann ebenfalls durch die Beeinflussung der Mikrobiota bei säugenden Sauen die Gesunderhaltung beim Neugeborenen unterstützt werden. Sowohl bei tragenden Sauen wie auch bei Mastschweinen wird es möglich gemacht über den gesteigerten Einsatz von Faser die Rationen zu verdünnen und damit für mehr Ruhe und weniger Stress zu sorgen.

Im Folgenden werden Orientierungswerte für den Gehalt an Rohfaser, Neutral-Detergenzien-Faser nach Amylasebehandlung und Veraschung (aNDFom) und Säure-Detergenzien-Faser nach Veraschung (ADFom) in Alleinfuttermitteln für Sauen, Ferkel und Mastschweine dargestellt. Diese Orientierungswerte sind aus Praxiserfahrungen abgeleitet.

Orientierungswerte für den Gehalt an Rohfaser, aNDFom und ADFom							
Kategorie Phase Rohfaser aNDFom ADFom g/kg g/kg g/kg							
Sauen	Tragend	≥ 70	≥ 200	≤ 80			
	Laktierend	≥ 45	≥ 160	≤ 70			
Ferkel		≥ 35	≥ 110	≤ 70			
Mastschweine		≥ 35	120-140	≤ 70			


Quelle: DLG Merkblatt 463, 1. Auflage, 07/2021

Zur Befriedigung des Wühl- und Futtersuchtriebs kann der Beschäftigungseffekt von faserreichen Futtermitteln durch eine längere Futteraufnahme genutzt werden. Das zusätzliche Angebot von Faserträgern hat in Versuchen nicht zu einer reduzierten Aufnahme des Mischfutters geführt, sondern dies teilweise gesteigert, sodass eine negative Auswirkung auf die Futteraufnahme nicht zu erwarten ist. Nachfolgend sind Orientierungswerte für die tägliche Grobfuttergabe dargestellt. (DLG-Merkblatt 463, 1. Auflage, 07/2021)

Orientierungswerte für zusätzliche tägliche Gabe an Grobfutterkomponenten								
Grobfuttermittel Sinnvolle Grobfuttermenge zur Beschäftigung (in g/Tier/Tag)								
	Sauen	Sauen Sauen Mastschweine Mastschweine						
	tragend	tragend säugend < 60 kg LM > 60 kg LM						
Stroh	250	100	15	30				
Heu	350	150	30	60				
Grassilage	750	200	60	150				
Maissilage	800	250	100	250				

Quelle: DLG-Merkblatt 463, 1. Auflage, 07/2021

Abschließend wird zur Zusammenschau das komplexe Zusammenspiel von Ernährung, Immunsystem und Darmflora dargestellt. Futter und Fütterung, im Speziellen Faserfuttermittel üben dabei einen zentralen Einfluss aus.

Zusammenspiel von Ernährung, Immunsystem und Darmflora (Quelle: Stalljohann et al., 2021; verändert nach Pluske, 2007)

Fazit:

Das Verhalten der Schweine wird in starkem Maß durch Futtersuch- und Fressverhalten bestimmt. Die resultierenden Verhaltensansprüche sind in der Haltung, dem Management und der Ausgestaltung von Futter und Fütterung ausreichend zu berücksichtigen. Neben dem Verhalten sind auch Aspekte der Sättigung und der Diätetik zu beachten. Futter und Fütterung nehmen somit eine Schlüsselrolle bezüglich Wohlbefinden und Verhalten beim Schwein ein. Ziel der Tierernährung muss es sein mit ausgewogenen, auf Erhaltung und Gesundheit und Leistungsbereitschaft der Tiere abgestimmten Futtermitteln positiv auf das Wohlbefinden der Tiere einzuwirken. Eine entscheidende Rolle für das Wohlbefinden der Tiere spielen hier zum Beispiel Faserstoffe, die nicht im Dünndarm, sondern im Dickdarm abgebaut werden. Dies ist bei der Rationsplanung sowie dem Futter- und Fütterungscontrolling zu beachten.

Beurteilung der Nahrungskonkurrenz zwischen der Human- und Schweineernährung mittels "hef" - Faktor (human-edible fraction)

- Schweinerationen enthalten einen hohen Anteil an Futtermittel, die aus ernährungsphysiologischer Sicht auch für den Humanbereich eine direkte Nahrungsquelle darstellen könnten, z. B. Getreide.
- Die Einschätzung der human edible fraction (hef) eines jeden Futtermittels stellt eine Möglichkeit dar, um die Nahrungskonkurrenz zwischen Tier und Mensch zu bewerten.
- Mit dem hef-Faktor wird der potenziell vom Menschen verzehrbare Anteil abgebildet. Dieser kann sowohl für den Gehalt an Protein als auch Energie je Futtermittel kalkuliert werden.
- Es gibt verschiedene hef-Szenarien, die sich abhängig von der Aufbereitungstechnologie (Ertl et al. 2015) definieren lassen (siehe Tabelle).
- Szenario "Mittel" beschreibt jenen Anteil an essbarer Fraktion eines Futtermittels, welcher mit dem derzeitigen Stand der Technik erzielbar ist.
- Beispielrationen und Berechnungen für tragende Sauen und Mastschweine werden dargestellt.

Human verzehrbarer Anteil des Rohproteins der Einzelfuttermittel (hef) in Abhängigkeit der technologischen Aufbereitung (Quelle: Ertl et al., 2015)

Futtermittei	het-Antei	I (% von Rohprotein) -	Szenario	
Technologische Aufbereitung	Niedrig	Mittel	Hoch	
Gerste	40	65	80	
Körnermais	70	80	90	
Weizen	60	80	100	
Sojabohnen	50	92	93	
Rapsschrot	30	59	87	
Sojaschrot	50	71	92	
Weizenkleie	0	10	20	
Maissilage	19	29	45	

¹Sonstige Nebenprodukte (z.B. Trockenschnitzel; Biertreber; Trockenschlempe der Bioethanolproduktion, etc.) und Grobfutter (z.B. frisches Grünfutter; Silage, Heu etc.);

0

0

0

Sonstige¹

Beispielrationen für tragende Sauen und Mastschweine (> 90 kg LM) mit hohem und niedrigem hef, Berechnung basierend auf mittlerem hef – Szenario (siehe Tabelle oberhalb)

, 3	Tragende Sauen `		Mastschweine	e (> 90 kg LM)
Rationsanteil, %	hef hoch	hef gering	hef hoch	hef gering
Weizen	55,5		60,5	
Gerste	23,5	74,0	30,5	62,5
Sojaextraktionsschrot	4,0		6,0	
Trockenschlempe		9,0		12,0
Weizenkleie	15,0	10,0		15,0
Trockenschnitzel		4,5		7,0
Sojaöl			0,5	0,5
Mineralstoffmischung ^{1, 2}	2,0	2,5	2,5	3,0
Trockenmasse, g	880	880	880	880
Rohprotein, g	137	132	137	141
Verd. Lysin, g	4,94	4,58	6,11	5,95
hef-Faktor	64	49	73	43

¹Tragende Sauen: 20,0 % Ca, 1 % P, 7 % Lysin, 1 % Methionin, 1,5 % Threonin ²Mastschweine: 16,5 % Ca, 0 % P, 10 % Lysin, 2 % Methionin, 3,0 % Threonin

Versorgungsempfehlungen und Richtwerte

Jungsauenaufzucht

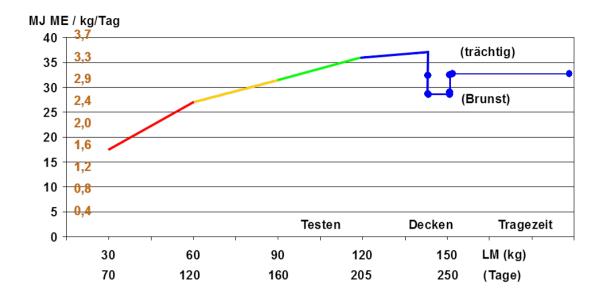
Ziele in der Jungsauenaufzucht bzw. zur Erstbelegung

Alter beim Decken	240 - 260 Tage
Lebendmasse beim Decken	130 - 150 kg
Zuwachs (Geburt bis Decken)	550 - 600 g
Zuwachs (30 kg LM bis Decken)	650 - 700 g
Rückenspeckdicke zur Besamung ¹	12 - 14 mm (P2)
Rückenspeckdicke zur Geburt ¹	16 - 20 mm (P2)
Erstbelegung	im 2 3. Östrus
Labanahaaaaan, uu aaba bia 4. Abfankala	75 145

Lebendmassezuwachs bis 1. Abferkeln 75 kg

Versorgungsempfehlungen in der Jungsauenaufzucht (GfE 2006)

LM, kg	Zuwachsrate, g/Tag	ME, MJ/Tag	pcv Lysin, g/Tag	Lysin ¹ , g/Tag	Futtermenge ² , kg/Tag
30-60	650	21	12,6	15,8	1,7-1,8
60-90	700	28	13,2	16,5	2,2-2,3
90-120	700	33	13,0	16,3	2,6-2,8
120-150	700	37	13,0	16,3	2,8


¹Lysin = pcv Lysin/0,8; ²bei 12,0-12,5 MJ ME/kg (30-120 kg LM bzw. 13,0 MJ ME/kg ab 120 kg LM).

Richtwerte je kg Jungsauen-Futter bei 88 % TM

LM,	ME,	pcv Lysin,	Lysin,	M+C,	Thr,	Trp,	Ca,	vP,	Na,
kg	MJ	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg
30-60	12,0-12,5	7,5	9,4	5,2	6,1	1,7	7,0	3,0	1,5
60-90	12,0-12,5	5,9	7,4	4,1	4,8	1,3	6,0	2,6	1,5
90-120	12,0-12,5	4,9	6,2	3,4	4,0	1,1	6,0	2,6	1,5
120-150	13,0	4,6	5,7	3,1	3,7	1,0	5,7	2,4	1,5

¹Der Messpunkt P2 befindet sich etwa 6 bis 7 cm über dem Musculus longissimus dorsi, seitlich der Wirbelsäule hinter der letzten Rippe.

Fütterungsstrategie in der Jungsauenaufzucht (MJ ME bzw. kg Futter pro Tag)

Richtwerte Aminosäureverhältnisse

						Lysin zu						
Lys	:	M+C	:	Thr	:	Trp	:	Val	:	lle	:	Leu
1	:	0,55	:	0,65	:	0,18	:	0,65	:	0,5	:	1,03

AS-Verhältnisse können (näherungsweise) sowohl für Brutto-, als auch für Nettogehalte genutzt werden.

Richtwert Ca:vP-Verhältnis

Ca : vP						
Ca	:	vP				
2,2 - 2,5	:	1				

Eberaufzucht / Eber

Ziele in der Eberaufzucht bzw. zur Zuchtnutzung

Lebendmasse 140 - 180 kg Lebenstagszunahme 600 - 700 g

⇒ ad libitum-Fütterung bis 120 kg LM

⇒ danach verhaltene Fütterung auf Kondition (500 - 600

g/Tag)

Energiedichte ≤ 12,5 MJ ME/kg Futter

Versorgungsempfehlungen für Eberaufzucht und Eber

LM, kg	Zuwachsrate, g/Tag	ME, MJ/Tag	Lysin, g/Tag	ME, MJ/kg	Futtermenge, kg/Tag
30-60	750	22	18,5	12,5	1,8
60-90	850	28	23,0	12,5	2,2
90-120	750	32	25,5	12,5	2,6
120-180 ¹	600	35	25,0	12,0	2,9
> 180 ¹	-	30-35	18-20 ²	11,5	2,6-3,0

¹Lys:Met+Cys 1: ≥ 0,65; ²25 g/Tag bei intensiver Zuchtnutzung.

Richtwerte je kg Futter bei 88% TM (GfE 2006)

LM,	ME,	XP,	pcv Lys,	Lys,	M+C,	Thr,	Trp,	XF,	Ca,	vP,	Na,
kg	MJ/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg
30-60 ¹	12,5	180	8,8	10,5	7,3	6,9	1,9	40	7,0	2,7	1,5
60-90 ¹	12,5	175	8,2	10,3	7,0	6,6	1,8	40	6,5	2,5	1,5
90-120 ¹	12,5	170	7,5	9,8	6,5	6,3	1,7	40	6,0	2,3	1,5
120-180 ¹	12,0	140	6,0	8,6	6,0	5,6	1,5	50	6,0	2,3	1,5
> 180 ²	11,5	130	5,5	6,5	4,7	4,2	1,2	70	6,0	2,3	1,5

 $^{^{1}}$ 0,7-0,65 g pcv Lys bzw. 0,82-0,75 g Lys/MJ ME; 2 0,5 g pcv Lys bzw. 0,6 g Lys/MJ ME.

Futterzusatzstoffe für Eber in Zuchtnutzung – je Tier und Tag¹

Zusatzstoff		pro Tag	Zusatzstoff		pro Tag
Vit. A	ΙE	10.000	Vit. B ₂	mg	8
Vit. D ₃	ΙE	600	Vit. B ₆	mg	3
Vit. E	ΙE	100	Vit. B ₁₂	mg	0,04
Selen	mg	0,5	Cholin	mg	3.000

¹Zulässige Höchstgehalte siehe Seite 37.

Richtwerte Aminosäureverhältnisse und Richtwert für Ca:vP-Verhältnis

			Lysin z	u		
Lys	: M+C	: Thr	: Trp	: Val	: Ile	: Leu
1	: 0,7	: 0,65	: 0,18	: 0,65	: 0,5	: 1,03

Ca : vP						
Ca	vP					
2,2 - 2,5	1					

AS-Verhältnisse können (näherungsweise) sowohl für Brutto-, als auch für Nettogehalte genutzt werden.

Zuchtsauenfütterung

Ziele in der Zuchtsauenhaltung

> 25 abgesetzte Ferkel/Sau/Jahr > 1,4 kg Geburtsgewicht

> 12 lebend geborene Ferkel/Wurf > 7,5 kg Absetzgewicht

> 2,3 Würfe pro Sau/Jahr ≤ 28 Tage Säugezeit

< 12% Saugferkelverluste > 70 Ferkel/Sau Lebensleistung

Gewichtsentwicklungen und Ferkelzahlen (Basisdaten)

			Trächtigkeit Nr.					
		1 2 3 4						
LM beim Belegen	kg	140	185	225	255			
LM-Zuwachs	kg	80	75	65	(35)			
Erwartete Ferkel / Wurf	n	12	13	13	13			
Säugedauer	Tage	25	25	25	25			
Absetzgewicht Ferkel	kg	7-8	7-8	7-8	7-8			
Wurfzuwachs	kg/Tag	2,0-2,5	2,0-2,5	2,5-3,0	2,5-3,0			

Fütterung tragender Sauen

ME-Empfehlungen für tragende Sauen (GfE 2006)

Energie (MJ ME/Tag)	Trächtigkeit Nr.						
	1	2	3	4			
LM-Verlust während der Laktation: 15 kg							
Niedertragend (Tag 1-84) ¹	31	35	36	33			
Hochtragend (Tag 85-115) ¹	39	43	44	40			
Tragend (Tag 1-115) ¹	34,4	37,4	38,4	35,1			
Tragend (10 kg Verlust) ¹	33,4	36,4	37,4	34,8			
Tragend (20 kg Verlust) ¹	-	38,4	39,4	36,1			

¹Haltung unterhalb des thermoneutralen Bereichs (19 °C bei Einzelhaltung, 14 °C bei Gruppenhaltung) für je -1 °C Zuschläge: Einzelhaltung 0,6 MJ ME/Tag, Gruppenhaltung 0,3 MJ ME/Tag.

Temperatureinfluss auf Futteraufnahme (Gruppenhaltung)

Temperatur	Zuschlag ¹
° C	Futter, g/Tier/Tag
13	25
12	50
11	75
10	100

¹bei 12 MJ ME/kg Futter (88% TM)

Lysin-Empfehlungen für tragende Sauen (GfE 2006)

bei LM-Verlust während der Laktation von 15 kg

			Trächtigkeitsnummer						
		1	1 2 3 4						
		NT/HT/T ²	NT/HT/T ²	NT/HT/T ²	NT/HT/T ²				
pcv Lys ¹	g/Tag	11,3/16,1/12,6	11,7/16,3/12,5	10,5/15,7/11,9	6,1/11,3/7,5				
Lys ¹	g/Tag	14,1/20,1/15,8	14,6/20,4/15,6	13,1/19,6/14,9	7,6/14,1/9,4				

¹pcv Lysin/0,8 = Lysin; ²NT/HT/T, Niedertragend/Hochtragend/Tragend.

Richtwerte je kg Tragefutter bei 88% TM

Tragephase	ME,	XP,	pcv Lys,	Lys,	XF,	Ca.	νP,	Ρ,	Na,
	MJ	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg
nieder ¹ (Tag 1-84)	12,0	120	4,4	5,5	> 70	5,2	2,0	3,8	2,0
hoch ² (Tag 85-115)	12,0	120	4,8	6,0	> 70	5,7	2,2	4,2	2,0
tragend (Tag 1-115)	12,0	120	4,8	6,0	> 70	5,5	2,1	4,2	2,0

¹durchgängig für Altsauen; ²für Jungsauen.

Futtermenge Tragefutter je Sau/Tag, kg

Energie (12 MJ ME/kg TF)	Trächtigkeit Nr.								
	1	2	3	4					
LM-Verlust während der Laktation: 15 kg									
niedertragend (Tag 1-84)	2,6	2,9	3,0	2,8					
hochtragend (Tag 85-115)	3,3	3,6	3,7	3,3					
tragend (Tag 1-115)	2,9	3,1	3,2	2,9					

Richtwerte Aminosäureverhältnisse

						Lysin zu						
Lys	:	M+C	:	Thr	:	Trp	:	Val	:	lle	:	Leu
1	:	0,60	:	0,65	:	0,19	:	0,70	:	0,50	:	1,06

AS-Verhältnisse können (näherungsweise) sowohl für Brutto-, als auch für Nettogehalte genutzt werden.

Richtwert für Ca:vP-Verhältnis

Ca : vP							
Ca	:	vP					
2,4 - 2,6	:	1					

Rohfaserversorgung

Laut § 30 (6) Tierschutz-Nutztierhaltungsverordnung sind trächtige Jungsauen und Sauen bis eine Woche vor dem voraussichtlichen Abferkeltermin mit Alleinfutter mit einem Rohfasergehalt in der Trockenmasse von mindestens 8 Prozent oder so zu füttern, dass die tägliche Aufnahme von mindestens 200 g Rohfaser je Tier gewährleistet ist.

Rohfaserversorgung

→ 70 g/kg Tragefutter oder > 200 g/Sau/Tag

Einsatzempfehlungen nach Rohfasergehalt des Faserträgers

Faserträger I: 300 g/kg Rohfaser	10% Einsatz
Faserträger II: 200 g/kg Rohfaser	15% Einsatz
Faserträger III: 100 g/kg Rohfaser	30% Einsatz

Faustzahlen zur Energieversorgung in der Tragezeit, MJ ME/Tag

Bedarf für	Beispiel: 2. Trächtigkeit					
maternaler Zuwachs	+10 kg LM	\rightarrow	+1,5 MJ/Tag	+40 kg	\rightarrow	6,0 MJ
LM-Verlust	- 10 kg LM	\rightarrow	+1,5 MJ/Tag	-15 kg	\rightarrow	2,3 MJ
Konzeption + Milchdrüse		\rightarrow	+2 ¹ /7 ² MJ/Tag		\rightarrow	3,5 MJ
Erhaltung	+10 kg LM	\rightarrow	+1,1 MJ/Tag	220 kg	\rightarrow	24,0 MJ
Gesamt	40 kg materna	aler Zu	wachs + 15 kg LM-\	/erlust		= 35,8 MJ

¹niedertragende Sau, ²hochtragende Sau.

Regeleinheit: +/- 100 g Tragefutter/Sau/Tag

Konditionsklassen von Zuchtsauen

zu gering (Note 2)

Beckenknochen und der Hüfthöcker sind leicht bedeckt.

Das Gewebe um den Schwanzansatz und die Flanken sind leicht eingefallen.

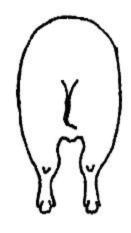
Die Dornfortsätze der Rückenwirbel und einzelne Rippen sind sichtbar.

etwas knapp (Note 3)

Die Beckenknochen und sind nicht sichtbar, starken Abtasten gefühlt werden.

Die Dornfortsätze der Rückenwirbel sind nur in Schulterhöhe noch gerade sichtbar.

Der Schwanzansatz ist sichtbar von Fettgewebe umgeben.



gut (Note 3,5 bis 4)

Beckenknochen und Lendenwirbel Rippen sind kaum noch fühlbar. Die Rükönnen aber beim ckenwirbel können nur unter starkem Druck abgetastet werden. ebenso die Lendenwirbel.

> Die Flanken sind voll und der Schwanz-ansatz ist mit leichten Fettfalten im Fett-gewebe eingebunden.

Auch im Vulvabereich und an den Innenschenkeln sind leichte Fettfalten zu er-ken-

überkonditioniert (Note 5)

Beckenknochen, Rippen, Rücken- und Lendenwirbel auch unter starkem Druck nicht mehr abtastbar.

Der Schwanzansatz ist mit starken Fettfalten im Fettgewebe versunken.

Im Vulvabereich und an den Innen-schenkeln sind starke Fettfalten festzustellen.

Orientierungswerte zur Konditionsfütterung tragender Sauen bis zum 80./85. Trächtigkeitstag¹

Konditionsklassen von 3,5 - 4,0 bei Altsauen und 4,0 bei Jung- und Erstlings-sauen zur Abferkelung

Konditionsklasse bei Umstellung in den Wartestall	Energiezulage zur Grund-versor- gung von 35 MJ ME/Tag² bei Alt- sauen/Erstlingssauen,	Futtermengen bei 12,0 MJ ME/kg Futter,
	MJ ME/Tag	kg/Tag
4,0	-	2,9
3,5	0,5	3,0
3,0	2,0	3,1
2,5	4,0	3,3
2,0	8,0	3,6

¹ab dem 80./85. Trächtigkeitstag sollen bei allen Sauen 40 MJ ME/Tag nicht wesentlich überschritten werden; ²2. Trächtigkeit, niedertragend

Fütterung säugender Sauen

Säugedauer: 25 Tage; Absetzgewicht: 7-8 kg

Energie-Empfehlungen für säugende Sauen; MJ ME/Tag (GfE 2006)

	ı	Wurfzuwachs, kg/Tag	g
	2,0	2,5	3,0
abgesetzte Ferkel/Wurf, n	8-10	11-12	13-14
LM-Verlust, kg ^a	15	15	20
LM-Beginn der Laktation, kg			
185 (1.Trächtigkeit)	65	80	90
225 (2.Trächtigkeit)	69	84	93
265 (3Trächtigkeit)	72	87	96
285 (4.Trächtigkeit)	74	89	98

^a± 1 kg LM-Verlust mehr/weniger erfordert ± 1 MJ ME/Tag.

Lysin-Empfehlungen für säugende Sauen (GfE 2006)

		Wurfzuwachs, kg/Tag								
	2,0	2,0 2,5 3,0								
abgesetzte Ferkel/Wurf, n	8-10	11-12	13-14							
LM-Verlust, kg	15	15	20							
pcv Lysin, g/Tag¹	37,5	48,0	56,2							
Lysin, g/Tag	45,7	58,5	68,5							

¹pcv Lysin/0,82=Lysin.

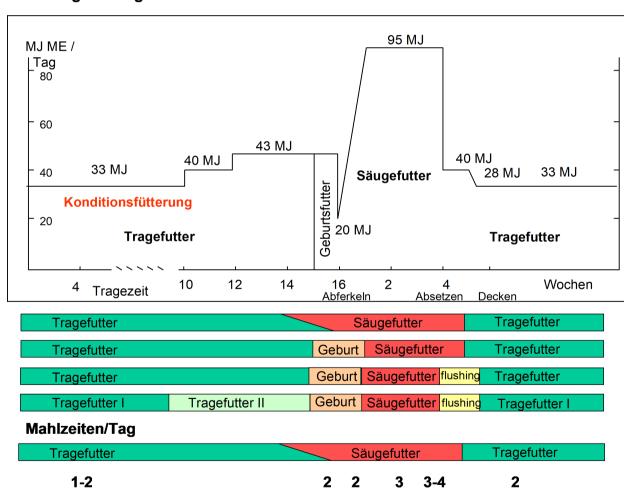
Richtwerte je kg Säugefutter bei 88% TM

ME,	XP,	pcv Lys,	Lys,	XF,	Ca,	νP,	Ρ,	Na,
MJ	G	g	g	g	g	g	g	g
13,0-13,4	160-165	8,0	9,7	40	7,5	3,3	5,0	2,0

Säugefutter/Sau/Tag bei 13,0 MJ ME/kg TF, Säugedauer: 25 Tage

	V	Vurfzuwachs, kg/Ta	ıg
	2,0	2,5	3,0
abgesetzte Ferkel/Wurf, n	8-10	11-12	13-14
LM-Verlust, kg	15	15	20
LM-Beginn der Laktation, kg			
185 (1. Trächtigkeit)	5,0	6,2	6,9
225 (2. Trächtigkeit)	5,3	6,5	7,2
265 (3. Trächtigkeit)	5,5	6,7	7,4
285 (4. Trächtigkeit)	5,7	6,8	7,5

Richtwerte Aminosäureverhältnisse


						Lysin zu						
Lys	:	M+C	:	Thr	:	Trp	:	Val	:	lle	:	Leu
1	:	0,60	:	0,65	:	0,20	:	0,70	:	0,57	:	1,15

AS-Verhältnisse können (näherungsweise) sowohl für Brutto-, als auch für Nettogehalte genutzt werden.

Richtwert für Ca:vP-Verhältnis

	Ca : vP	
Ca	:	vP
2,2 - 2,5	:	1

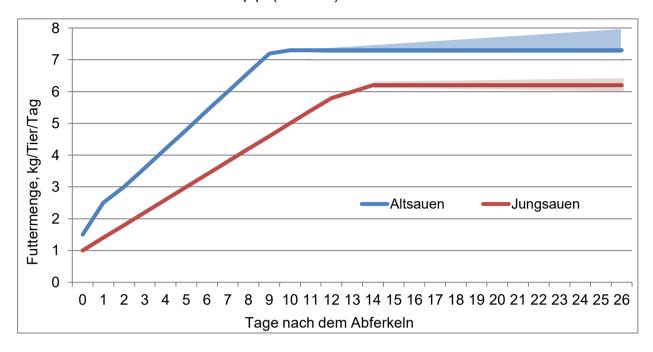
Fütterungsstrategien für Sauen

Zusammenhang Energiekonzentration und Energieaufnahme pro Tag

Energiekonzentration	Futtermenge kalkuliert	Energieaufnahme kalkuliert	Futtermenge tatsächlich ¹
MJ ME/kg TF	kg/Tag	MJ ME/Tag	kg/Tag
13,0	5,80	75,40	5,81
13,2	5,80	76,56	5,68
13,4	5,80	77,72	5,65
13,6	5,80	78,88	5,55

¹laut Zifo2.

Überzogene Energiegehalte bewirken eine Reduzierung der Futteraufnahme. Es ist wichtiger, Maßnahmen zur Erhöhung der Futteraufnahme, wie Optimierung der Stalltemperaturführung, Wasserversorgung, Troghygiene, Anzahl der Futterzuteilungen, durchzuführen.


Beachte: Die Futteraufnahme ist der entscheidende Faktor

Steigerung der

- Energiedichte um 0,4 MJ ME/kg Futter bei 5,8 kg Futter/Tag = + 2,32 MJ ME/Tag
- Futteraufnahme um 250 g/Tag bei 13,2 MJ ME/kg Futter = + 3,3 MJ ME/Tag

Anfütterungsphase in der Säugeperiode

Versuchsergebnis LVFZ Schwarzenau zum Verlauf der Futteraufnahme von Jungsauen und Sauen mit zwei oder mehr Würfen p.p. (Altsauen)

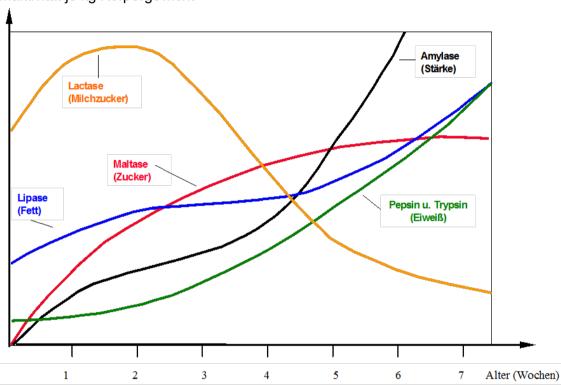
Die Futteraufnahme von Zuchtsauen während der Säugezeit hat sich in den letzten Jahren durch züchterischen Fortschritt stark erhöht. Trotzdem unterscheiden sich die Futteraufnahme von Jung- und Altsauen in der Säugeperiode, da Jungsauen gegenüber Altsauen (≥ 2. Wurf) ein niedrigeres Futteraufnahmevermögen aufweisen.

Die Futtermengen und die Steigerungsraten nach der Abferkelung (p.p.) müssen an das Futteraufnahmevermögen angepasst werden. Während die Futterkurve bei Altsauen im Normalfall (keine MMA-Probleme, Stoffwechselstörungen) steiler sein muss, d.h. die Steigerungsrate pro Tag höher, sind die Jungsauen verhaltener anzufüttern. Eine zögerliche Anfütterung wirkt sich insbesondere bei Sauen, die schon mehrere Würfe haben, nachteilig auf die Futteraufnahme in der restlichen Säugezeit aus. Bei Jungsauen ist eine verhaltene Anfütterung eher vorteilhaft.

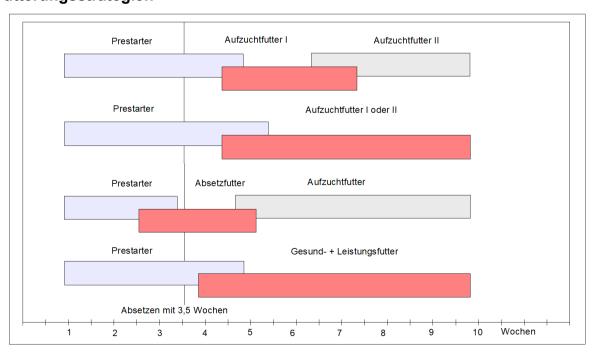
Fütterungsplan zur Anfütterung in der Säugezeit

Altsauen - "normal"	Jung-/Problemsauen - "langsam"
1.Tag p.p.: 2,5 kg/Sau	1.Tag p.p.: 2,5 kg/Sau
2.Tag p.p.: 3,0 kg/Sau	2.Tag p.p.: 2,8 kg/Sau
3.Tag p.p.: 3,5 kg/Sau	3.Tag p.p.: 3,1 kg/Sau
4.Tag p.p.: 4,0 kg/Sau	4.Tag p.p.: 3,4 kg/Sau
5.Tag p.p.: 4,5 kg/Sau	5.Tag p.p.: 3,8 kg/Sau
6.Tag p.p.: 5,0 kg/Sau	6.Tag p.p.: 4,2 kg/Sau
7.Tag p.p.: 5,5 kg/Sau	7.Tag p.p.: 4,6 kg/Sau
8.Tag p.p.: 6,0 kg/Sau	8.Tag p.p.: 5,1 kg/Sau
danach ad libitum	9.Tag p.p.: 5,6 kg/Sau
	10.Tag p.p.: 6,1 kg/Sau
	11.Tag p.p.: 6,6 kg/Sau
	danach ad libitum

Ferkelfütterung


Ziele in der Ferkelfütterung

- > 450 g tägliche Zunahmen von 8 bis 30 kg
- < 1,8 Futteraufwand
- < 2% Verluste


Aktivität von Verdauungsenzymen beim Ferkel

(In Anlehnung an Kirchgeßner et al., 2011)

Enzymaktivität je kg Körpergewicht

Fütterungsstrategien

Richtwerte je kg Ferkelfutter bei 88 % TM

Empfehlungen				LM, kg		
		Prestarter	Absetzfutter	Diätfutter ¹	FAF I	FAF II
Kg		5-8	8-12	8-12	12-20	20-30
ME	MJ	13,4	13,4	13,4	13,4	13,2
XP	g	180	180	165	175	170
Lysin/ME	g/MJ	1,00	1,00	1,00	0,95	0,85
Lysin	g	13,4	13,4	13,4	12,7	11,2
pcv Lys	g	12,1	12,1	12,1	11,5	10,1
Met	g	4,0	4,0	4,0	3,8	3,4
pcv Met	g	3,6	3,6	3,6	3,4	3,0
Met+Cys	g	7,1	7,1	7,1	6,7	5,9
pcv Met+Cys	g	6,4	6,4	6,4	6,3	5,4
Thr	g	8,4	8,4	8,4	8,4 8,0	
pcv Thr	g	7,6	7,6	7,6	7,2	6,4
Trp	g	2,4	2,4	2,4	2,3	2,0
pcv Trp	g	2,2	2,2	2,2	2,1	1,8
XF	g	-	40	40	35	30
Ca	g	8,5	7,5	6,5	7,5	7,0
Р	g	5,5	5,5	5,0	5,5	5,0
vP	g	3,5	3,5	3,3	3,5	3,3
Na	g	1,5	1,5	1,5	1,5	1,5

¹Diätfutter als spezielles Absetzfutter.

Lebendmasseentwicklung und Futteraufnahme bei Ferkeln – hohes Leistungs-niveau

Le-	Lebend-	Zunahmen	ME	Futter	Futtertyp
bens-	masse ¹				
woche	kg	g/Tag	MJ/Tag	g/Tag	
1.	2,8	200	-	5-10	Sauenmilch
2.	4,3	210	-	15-20	
3.	6,0	240	5,0	25-35	Prestarter Absetzen
4.	8,0	280	6,0	100	
5.	10,5	350	7,0	500	↑ ↓
6.	13,8	470	9,5	700	Ferkelaufzuchtfutter I
7.	17,5	520	11,1	830	
8.	21,5	570	12,5	900	↑
9.	25,5	650	15,5	1.200	Ferkelaufzuchtfutter II
10.	30,0	700	17,7	1.350	
11.	35,0	720	18,5	1.420	

¹Lebendmasse zum Ende der Woche.

Zunahmen: 1.-10.Woche ca. 400 g

5.-10.Woche ca. 520 g

 \pm 10% Zunahmen \pm 0,6 MJ/Tag

 \pm 10% Zunahmen \pm 50 g Futter/Tag

Futterverbrauch:

0,5-1,0 kg Prestarter/Ferkel
10-15 kg Ferkelaufzuchtfutter I 35 bis 40 kg/Ferkel
20-25 kg Ferkelaufzuchtfutter II 800-1.300 kg Ferkelfutter/Zuchtsau/Jahr

Richtwerte Aminosäureverhältnisse

Lysin zu												
Lys	:	M+C	:	Thr	:	Trp	:	Val	:	lle	:	Leu
1	:	0,53	:	0,63	:	0,18	:	0,62	:	0,5	:	1,0

Richtwert für Ca:vP-Verhältnis

	Ca : vP	
Ca	:	vP
2,2 - 2,5	:	1

Mastschweinefütterung

Ziele in der Mastschweinefütterung

- > 800 g tägliche Zunahmen
- > 2,8 Umtriebe/Jahr
- < 2,85 Futteraufwand
- > 58% Muskelfleisch
- < 2% Verluste
- < 37 MJ ME/kg Zuwachs

Versorgungsempfehlungen für Mastschweine (GfE, 2006)

LMZ ¹ , g/d					LM ²	², kg							
, •	30	40	50	60	70	80	90	100	110	120			
				Umse	tzbare E	nergie, M	IJ/Tag						
500	15	18	-	-	-	-	-	-	29	30			
600	17	19	21	23	-	-	28	30	31	33			
700	18	21	23	25	27	29	31	32	34	36			
800	20	23	25	28	30	31	33	35	37	39			
900	-	-	27	30	32	34	36	38	40	42			
1.000	-	-	-	32	34	36	38	-	-	-			
1.100	-	-	-	-	36	39	-	-	-	-			
	pcv Lysin, g/Tag												
500	9,9	9,8	-	-	-	-	-	-	9,6	9,6			
600	11,8	11,7	11,6	11,5	-	-	11,4	11,4	11,3	11,3			
700	13,6	13,5	13,4	13,3	13,2	13,2	13,1	13,0	13,0	12,9			
800	15,5	15,3	15,2	15,1	15,0	14,9	14,8	14,7	14,6	14,6			
900	-	-	17,0	16,9	16,8	16,7	16,5	16,4	16,3	16,2			
1.000	-	-	-	18,7	18,5	18,4	18,3	-	-	-			
1.100	-	-	-	-	20,3	20,1	-	-	-	-			
		.	r	.	Lysin,	g/Tag	r	r	.	r			
500	12,1	11,9	-	-	-	-	-	-	11,7	11,7			
600	14,4	14,3	14,1	14,0	-	-	13,9	13,9	13,8	13,8			
700	16,6	16,5	16,3	16,2	16,1	16,1	16,0	15,9	15,9	15,7			
800	18,9	18,7	18,5	18,4	18,3	18,2	18,0	17,9	17,8	17,8			
900	-	-	20,7	20,6	20,5	20,4	20,1	20,0	19,9	19,8			
1.000	-	-	-	22,8	22,6	22,4	22,3	-	-	-			
1.100	-	-	-	-	24,8	24,5	-	-	-	-			
		ı	Γ	I	Kalziun	n, g/Tag	Γ	Γ	ı	Γ			
500	6,9	7,2	-	-	-	-	-	-	8,6	8,9			
600	8,1	8,4	8,7	9,0	-	-	9,1	9,4	9,7	9,9			
700	9,3	9,6	9,9	10,2	10,5	10,5	10,5	10,5	10,7	11,0			
800	10,3	10,8	11,1	11,4	11,7	11,7	11,7	11,7	11,8	12,1			
900	-	-	12,4	12,6	12,9	12,9	12,9	12,9	12,9	13,2			
1.000	-	-	-	13,9	14,1	14,1	14,1	14,1	-	-			
1.100	-	-	-	-	15,4	15,4	- -	-	-	-			
F00	2.0	0.4		verdai	ulicher P	nospnor	, g/≀ag │		0.5	0.0			
500	3,0	3,1	-	-	-	-	-	-	3,5	3,6			
600	3,5	3,6	3,7	3,8	-	-	3,8	3,9	4,0	4,1			
700	4,0	4,1	4,2	4,3	4,4	4,4	4,4	4,4	4,5	4,6 5.0			
800	4,5	4,6	4,7 5.2	4,8	4,9	4,9	4,9 5.5	4,9 5.5	4,9	5,0			
900	-	-	5,3	5,4	5,5	5,5	5,5	5,5	5,5	5,5			
1.000	-	_	-	5,9	6,0	6,0	6,0	_	_	_			
1.100	-	-	-	-	6,5	6,5	-	-	-	-			

LMZ¹, Lebendmassezunahme; LM², Lebendmasse.

Versorgungsempfehlungen bei sehr hohem Proteinansatz und Jungeber (GfE, 2006)

LMZ ¹ , g/d					LM ²	, kg				
	30	40	50	60	70	80	90	100	110	120
				Umset	zbare E	nergie, I	MJ/Tag			
600	17	19	21	23	-	-	-	-	28	29
700	18	21	23	25				29	30	31
800	20	23	25	28	28	29	31	32	33	34
900	-	-	27	30	31	32	33	34	35	36
1.000	-	-	-	32	33	34	35	36	-	-
1.100	-	-	-	-	35	36	-	-	-	-
				ŗ	cv Lysi	n, g/Tag	J ²			
600	12,4	12,5	-	-	-	-	-	-	13,2	13,3
700	14,4	14,5	14,6	-				15,1	15,2	15,3
800	16,4	16,5	16,6	16,7	16,8	16,9	17,0	17,1	17,2	17,3
900	-	-	18,6	18,7	18,8	18,9	19,0	19,1	19,2	19,3
1.000	-	-	-	20,7	20,8	20,9	21,0	21,1	-	-
1.100	-	-	-	-	22,8	22,9	-	-	-	-
					Lysin,	g/Tag³				
600	15,1	15,2	-	-	-	-	-	-	16,1	16,2
700	17,6	17,7	17,8	-				18,4	18,5	18,7
800	20,0	20,1	20,2	20,4	20,5	20,6	20,7	20,9	21,0	21,1
900	-	-	22,7	22,8	22,9	23,0	23,2	23,3	23,4	23,5
1.000	-	-	-	25,2	25,4	25,5	25,6	25,7	-	-
1.100	-	-	-	-	27,8	27,9	-	-	-	-

 LMZ^1 , Lebendmassezunahme; LM^2 , Lebendmasse; 3 Kastraten 6% bzw. 0,7-1,4 g/Tag weniger (pcv) Lysin als weibliche Tiere.

Aminosäureverhältnisse Schweinemast

	Lysin zu											
Lys	: M+C	: Thr	: Trp	: Val	: Ile	: Leu						
1	: 0,55	: 0,65	: 0,18	: 0,65	: 0,5	: 1,0						

Richtwert für Ca:vP-Verhältnis

	Ca : vP	
Ca	:	vP
2,2 - 2,5	:	1

Versorgungsempfehlungen für weibliche Tiere und Börge/Kastraten

Futterkurven bei unterschiedlichem Zunahmeniveau von 725 g TZ bis 975 g TZ

MJ ME/		750	g TZ			850	g TZ			950	g TZ	
g TZ	Weib	liche	Böı	rge	Weib	liche	Bö	rge	Weib	liche	Bö	rge
kg LM	TZ, g 725	MJ ME	TZ, g 775	MJ ME	TZ, g 825	MJ ME	TZ, g 875	MJ ME	TZ, g 925	MJ ME	TZ, g 975	MJ ME
25	590	15,5	640	16,5	690	17,0	740	18,0	790	18,5	840	20,0
30	630	17,5	685	18,5	730	19,0	785	20,5	830	20,5	885	22,0
35	670	19,0	720	20,5	770	20,5	820	22,0	870	22,5	920	24,0
40	700	20,5	750	22,5	805	22,0	855	24,0	900	24,0	950	26,0
45	730	22,0	780	24,0	830	24,0	880	26,0	930	25,5	980	28,0
50	760	23,5	800	26,0	860	25,0	905	28,0	960	27,0	1.005	30,0
55	770	24,5	820	27,5	875	26,5	925	29,5	970	28,0	1.025	31,5
60	790	25,5	835	29,0	890	27,5	940	31,0	990	29,5	1.040	33,0
65	795	26,5	845	30,0	895	28,5	945	32,0	995	30,5	1.045	34,5
70	800	27,5	845	31,5	900	29,5	950	33,5	1000	31,5	1.050	36,0
75	795	28,5	845	32,5	895	30,5	945	35,0	995	32,5	1.045	37,0
80	790	29,0	840	33,0	890	31,0	940	36,0	990	33,0	1.040	38,0
85	780	29,5	825	34,0	875	31,5	930	36,5	980	33,5	1.030	39,0
90	760	30,0	810	34,5	860	32,0	910	37,0	960	34,0	1.010	39,5
95	740	30,0	790	35,0	840	32,0	890	37,5	940	34,5	990	40,0
100	710	30,0	760	35,5	810	32,0	860	38,0	910	34,5	960	40,5
105	680	30,0	730	35,0	780	32,0	830	38,0	880	34,5	930	41,0
110	640	30,0	690	35,0	740	32,0	790	38,0	840	34,5	890	41,0
115	600	30,0	650	35,0	700	32,0	750	38,0	800	34,5	850	41,0
120	550	30,0	600	35,0	650	32,0	700	38,0	750	34,5	800	41,0
125	500	30,0	550	35,0	600	32,0	650	38,0	700	34,5	750	41,0

TZ, Tageszunahme.

Getrenntgeschlechtliche Aufstallung:

Rechtzeitige, angemessene Rationierung der Kastraten (Börgen) und richtige Wahl des Schlachttermins!

Richtwerte je kg Mastfutter (bei 88 % TM) – 750/850/950 g TZ bzw. 800 g TZ Jungebermast (DLG, 2010)

LMZ ¹ ,			LM ² , kg						
g			28	40	70	90	110		
			13,4	13,4	13,0	13,0	13,0		
	Lysin/ME	g/MJ	0,80	0,70	0,70	0,60	0,55		
	Lysin	g	10,5	9,5	9,0	8,0	7,0		
750	pcv Lysin	g	9,0	8,0	7,5	6,5	6,0		
750	Kalzium	g	7,0	6,5	6,0	5,5	5,0		
	vP	g	3,0	2,5	2,3	2,1	1,9		
	Phosphor	g	5,0	4,5	4,5	4,0	4,0		
	Lysin/ME	g/MJ	0,83	0,75	0,70	0,60	0,55		
850	Lysin	g	11,0	10,0	9,0	7,5	7,0		
	pcv Lysin	g	9,5	8,5	7,5	6,5	5,9		
	Lysin/ME	g/MJ	0,86	0,80	0,70	0,60	0,50		
950	Lysin	g	11,6	10,5	9,0	7,5	6,5		
	pcv Lysin	g	10,2	9,0	7,5	6,5	5,5		
	Lysin/ME	g/MJ	0,90	0,80	0,75	0,60	0,55		
800 ³	Lysin	g	12,0	11,0	9,5	8,5	8,0		
	pcv Lysin	g	10,5	9,5	8,0	7,0	6,5		

¹LMZ, Lebendmassezunahme; ²LM, Lebendmasse; ³Jungebermast.

Richtwerte je kg Mastfutter bei 88 % TM (DLG 2010)

750 g Tageszunahmen

		Vor-/Anfa	Vor-/Anfangsmast		Endmast	
Lebendmasse, kg		28	40	70	90	110
MJ ME		13,4	13,4	13,0	13,0	13,0
Lysin/ME	g/MJ	0,80	0,70	0,70	0,60	0,55
Lysin ¹ /pcv Lysin ²	g	10,5 / 9,0	9,5 / 8,0	9,0 / 7,5	8,0 / 6,5	7,0 / 6,0
Met+Cys ^{1,3} /pcv M+C ^{2,3}	g	5,8 /5,0	5,5 / 4,5	5,0 / 4,0	4,5 / 3,8	4,0 / 3,5
Threonin ¹ /pcv Thr ²	g	6,8 / 5,8	6,2 / 5,2	6,0 / 4,8	5,2 / 4,4	5,0 / 3,8
Tryptophan ¹ /pcv Trp ²	g	1,9 / 1,6	1,7 / 1,5	1,6 / 1,4	1,4 / 1,2	1,3 / 1,1
XF	g	> 30	> 30	> 30	> 30	> 30
Ca	g	7,0	6,5	6,0	5,5	5,0
P ⁴ / <i>vP</i>	g	5,0 / 3,0	4,5 / 2,5	4,5 / 2,3	4,0 / 2,1	4,0 / 1,9
Na	g	1,5	1,3	1,0	1,0	1,0

850 g Tageszunahmen

		Vor-/Anfa	ngsmast	Mittelmast	Mittelmast Endma	
Lebendmasse, kg		28	40	70	90	110
MJ ME		13,4	13,4	13,0	13,0	13,0
Lysin/ME	g/MJ	0,83	0,75	0,70	0,60	0,55
Lysin ¹ /pcv Lysin ²	g	11,0 / 9,5	10,0 / 8,5	9,0 / 7,5	7,5 / 6,5	7,0 / 5,9
Met+Cys ^{1,3} /pcv M+C ^{2,3}	g	6,0 /5,1	5,5 / 4,7	5,0 / 4,0	4,2 / 3,6	3,8 / 3,3
Threonin ¹ /pcv Thr ²	g	7,1 / 6,0	6,5 / 5,5	6,0 / 4,8	4,9 / 4,1	4,5 / 3,9
Tryptophan ¹ /pcv Trp ²	g	2,0 / 1,7	1,8 / 1,5	1,6 / 1,4	1,4 / 1,2	1,3 / 1,1
XF	g	> 30	> 30	> 30	> 30	> 30
Ca	g	7,0	6,5	6,0	5,5	5,0
P ⁴ / <i>vP</i>	g	5,0 / 3,0	4,5 / 2,5	4,5 / 2,3	4,0 / 2,1	4,0 / 1,9
Na	g	1,5	1,3	1,0	1,0	1,0

950 g Tageszunahmen

		Vor-/Anfa	ngsmast	Mittelmast	End	mast
Lebendmasse, kg		28	40	70	90	110
MJ ME		13,4	13,4	13,0	13,0	13,0
Lysin/ME	g/MJ	0,86	0,80	0,70	0,60	0,50
Lysin ¹ /pcv Lysin ²	g	11,6 / 10,2	10,5 / 9,0	9,0 / 7,5	7,5 / 6,5	6,5 / 5,5
Met+Cys ^{1,3} /pcv M+C ^{2,3}	g	6,4 / 5,4	5,8 / 4,9	5,0 / 4,0	4,2 / 3,6	3,6 / 3,0
Threonin ¹ /pcv Thr ²	g	7,5 / 6,6	6,8 / 5,8	6,0 / 4,8	4,9 / 4,1	4,2 / 3,6
Tryptophan¹/pcv Trp²	g	2,1 / 1,8	1,9 / 1,6	1,6 / 1,4	1,4 / 1,2	1,2 / 1,0
XF	g	> 30	> 30	> 30	> 30	> 30
Ca	g	7,0	6,5	6,0	5,5	5,0
P ⁴ / <i>vP</i>	g	5,0 / 3,0	4,5 / 2,5	4,5 / 2,3	4,0 / 2,1	4,0 / 1,9
Na	g	1,5	1,3	1,0	1,0	1,0

 $^1\text{Lys}: \text{M+C}: \text{Thr}: \text{Trp}: \text{Val}: \text{Ile}: \text{Leu} = 1:0,55:0,65:0,18:0,65:0,5:1,0; }^2\text{unterstellte praecaecale Aminosäureverdaulichkeit 85%; }^3\text{Met>Cys; }^4\text{unter Zusatz von Phytase.}$

Beachte: ≥ 5,3 g Lysin/100 g Rohprotein in der Ration, pcv XP = Summe der empfohlenen essentiellen Aminosäuren x 2,5.

Wachstums-/Futterkurven

Lebend- masse 30-120 kg	7	00 g	8	800 g		900 g		750 g W¹		750 g K²	
	g	MJ ME	G	MJ ME	g	MJ ME	g	MJ ME	g	MJ ME	
30-40	600	18,0	700	19,5	800	21,5	670	19,1	670	20,0	
40-50	690	22,5	790	24,0	900	27,0	745	23,2	745	23,5	
50-60	745	26,2	850	28,0	950	30,5	800	27,5	800	28,0	
60-70	780	29,0	875	30,8	980	33,0	825	29,5	825	30,0	
70-80	820	30,5	910	33,0	990	35,0	840	32,0	840	33,0	
80-90	760	31,5	870	34,0	970	36,7	810	33,2	800	33,0	
90-100	720	32,5	820	34,5	910	37,2	770	33,5	730	33,0	
100-110	650	33,0	750	35,0	850	37,5	710	34,0	670	33,0	
110-120	580	33,5	650	35,0	770	37,5	630	35,0	=.	-	
Masttage, n	129		129 113		100		120		107		
ME/Zuwachs MJ/kg	2	40,8		38,3 3		36,6		39,6		38,5	

¹Weibliches Tier; ²Kastrat/Börge.

Futteraufteilung bei Phasenfütterung

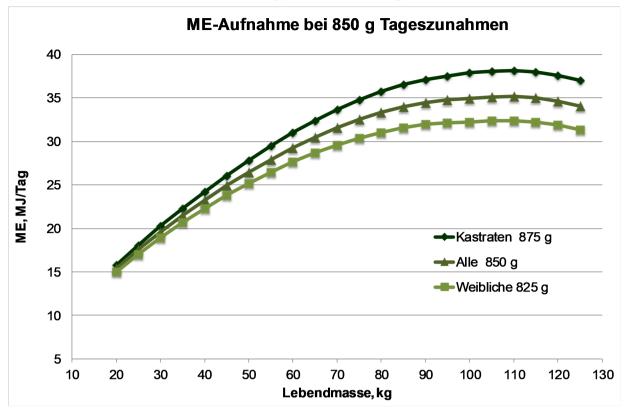
Annahmen: Mast von 30-120 kg Lebendmasse; 700-900 g tägliche Zunahmen / 13,0-13,4 MJ ME/kg Futter (bei 88% Trockenmasse)

Anzahl	Futterverteilung / Phase							
Phasen	1	2	3	4	5	6	7	8
1	100	-	-	-	-	-	-	-
2	40	60	-	-	-	-	-	-
3	25	35	40	-	-	-	-	-
4	20	23	27	30	-	-	-	-
5	15	17	20	23	25	-	-	-
6	12	14	15	17	19	23	-	-
7	10	11	12	14	16	18	19	-
8	9	10	11	12	12	14	16	16

Futteraufwand / Futterverbrauch / Futterverteilung

Anzahl		Tägliche Zunahmen, g										
Futter-		650			750			850			950	
phasen	1:	kg	%	1:	kg	%	1:	kg	%	1:	kg	%
1-phasig	3,0	270	100	2,9	261	100	2,8	252	100	2,7	243	100
2-phasig ¹												
Phase 1	2,5	112,5	42	2,4	108	41	2,3	103,5	41	2,2	99	41
Phase 2	3,5	157,5	58	3,4	153	59	3,3	148,5	59	3,2	144	59
3-phasig ²												
Phase 1	2,4	72	27	2,3	69	26	2,2	66	26	2,1	63	26
Phase 2	3,1	93	34	3,0	90	34	2,8	84	33	2,7	81	33
Phase 3	3,5	105	39	3,4	102	39	3,4	102	40	3,3	99	41

 $^{^{1}}$ Phase 1: 30-75 kg LM; Phase 2: 75-120 kg LM; 2 Phase 1: 30-60 kg LM; Phase 2: 60-90 kg LM; Phase 3: 90-120 kg LM.


Futteraufwand (kg Futter pro kg Zuwachs, ohne Futterverluste) (Kastraten plus 5%)

Zunahmen, g	J	Lebendmasse, kg								
	30-40	-50	-60	-70	-80	-90	-100	-110	-120	Gesamt
600	2,2	2,3	2,5	2,6	2,9	3,2	3,6	4,4	5,9	3,25
700	2,1	2,3	2,5	2,6	2,8	3,1	3,4	3,9	4,6	2,95
800	2,0	2,2	2,3	2,5	2,6	2,8	3,0	3,3	3,8	2,75
900	2,0	2,1	2,3	2,4	2,5	2,7	2,8	3,1	3,4	2,65

Schätzgleichung (2014) für Futterverbrauch und Futteraufwand

Futterverzehr, kg = 264 - (LM _A - 30) x 2	Beispiel:						
+ (LM _E - 120) x 4	Futterverzehr, kg = 264 - (28-30) x 2						
- (TZ - 750) x 0,15	+ (122-120) x 4						
- (MJ ME - 13,0) x 20	- (850-750) x 0,15						
LM _A = Anfangsgewicht, kg	- (13,2-13,0) x 20						
LM _E = Endgewicht, kg	= 257						
LM _E - LM _A = Zuwachs, kg	Futteraufwand, kg/kg = 257 / 94						
TZ = Tägliche Zunahmen, g	= 2,73						
MJ ME = MJ ME/kg Futter (bei 88% TM)							
Futteraufwand = Futterverzehr, kg / Zuwachs, kg							

Energiebedarf in Abhängigkeit von LM und Zunahme bei Geschlechtertrennung Einfluss von Geschlecht und Genotyp auf den Energiebedarf

Maximale Pflanzenölanteile (%) für die Einhaltung von < 15 g Polyensäuren je kg Futter (bei 88 % TM) (DLG, 2010)

Hauptfutterkomponente	Maximale Anteile
	1,0-1,5% Sojaöl oder
	2,5-3% Rapsöl
Getreide	oder 1% Leinöl
Getreide	oder 4% Mischfett
	oder 5,5% Rapssamen
	oder 15% Rapskuchen
30% Maisanteil	0,5-0,7% Sojaöl oder 1,0-1,5% Rapsöl
> 50% Maisanteil	Kein Fett einsetzen

Einfluss von Bewegung und Temperatur auf den Energiebedarf

Unter konventionellen Haltungsbedingungen ist der für normale **Bewegungsaktivitäten** (Bewegung während ca. 10-15% des Tages) notwendige Energiebedarf in den Versorgungsempfehlungen enthalten. Gehen die Tagesaktivitäten (z.B. wegen Unruhe im Stall, Jungebermast) deutlich über zwei Stunden hinaus, führt dies bei einem Durchschnittsschwein mit 75 kg LM zu ca. 1,5 MJ ME Mehrbedarf pro Tag.

Werden Mastschweine unterhalb ihrer **kritischen Temperaturen** (UKT, ° C) gehalten, so erhöht sich deren Energiebedarf. Nachstehende Übersicht gibt an, wieviel an Energie bzw. Futter pro Tag je 1 °C Unterschreitung zusätzlich vorgelegt werden muss.

Notwendige Energie- bzw. Futterzulage bei Unterschreitung der kritischen Temperatur (UKT)

LM, kg	UKT, ° C	Extraenergie, MJ ME/Tag und -1 °C	Extrafutter, g/Tag und -1 °C
20	15 - 19	0,20	15
60	13 - 15	0,35	30
100	12 - 15	0,45	35

Ursachen für das (schnellere und/oder stärkere) Unterschreiten der UKT können sein:

- Freilandhaltung
- kalte Stallwände
- kaltes Tränkwasser
- kaltes Futter
- wenig isolierte Liegefläche
- Feuchtigkeit auf der Hautoberfläche
- Krankheit
- Zualuft
- reduzierte Futteraufnahme bzw. Leistung
- geringer Körperfettgehalt
- wenig Bewegung
- wenig Rohfaser

Erhöhte Bewegungsaktivitäten und Unterschreitungen der UKT beeinflussen nur den Energiebedarf der Tiere, nicht aber den Bedarf an Aminosäuren. Folglich muss bei der Rationsgestaltung in solchen Situationen (z.B. Freilandhaltung, Kaltstall) das Verhältnis von Aminosäuren zu Energie (z.B. Lysin/MJ ME) vergrößert werden.

Kennzahlen der Schweinefütterung

Lysin – Energieverhältnisse (Übersicht)

Leistungsstadium	Abschnitt kg LM	Lysin / ME g / MJ	pcv Lysin / ME g / MJ
Zuchtsauen	niedertragend	0,46	0,37
	hochtragend	0,50	0,40
	tragend	0,50	0,40
	säugend	0,72-0,75	0,60-0,62
Aufzuchtsauen	30-60	0,75	0,60
	60-90	0,59	0,47
	90-120	0,50	0,39
	120-150	0,40	0,35

Aufzucht / Mast (nach GfE 2006)

Gewichtsabschnitt kg		g Lysin (g pcv	Lysin) / MJ ME	
		1-phasig	2-phasig	3-phasig
-10	1,00 (0,90)			1,00 (0,90)
10-20	0,95 (0,86)	0,95 (0,86)	0,95 (0,86)	0,95 (0,86)
20-30	0,85 (0,76)		0,85 (0,76)	0,85 (0,76)
30-40	0,81 (0,70)		0,81 (0,70)	0,81 (0,70)
40-50	0,77 (0,66)	0,77 (0,66)		
50-60	0,73 (0,62)			
60-70	0,71 (0,59)			0,71 (0,59)
70-80	0,69 (0,53)		0,69 (0,56)	
80-90	0,67 (0,56)			
90-100	0,65 (0,55)			0,65 (0,56)
100-120	0,58 (0,45)			

Richtwerte je kg Futtermischung (Übersicht in 88% TM)

Futtertypen	ME	pcv	Lys	XP	XF	Ca	Р	νP	Na
		Lysin							
	MJ	g	g	g	g	g	g	g	g
Alleinfutter für Sauen									
Niedertragende Sauen ¹	12,0	4,4	5,5	120	> 70	5,2	4,0	2,0	2,0
Hochtragende Sauen ²	12,0	4,8	6,0	120	> 70	5,7	4,5	2,2	2,0
Tragende Sauen	12,0	4,8	6,0	120	> 70	6,0	4,5	2,1	2,0
Sattfutter	9,0	3,6	4,5	100	> 100	5,5	4,0	2,0	2,0
Säugende Sauen	13,0-13,4	8,0	9,7	170	40	7,5	5,0	3,3	2,0
Alleinfutter für Jungsauen									
Aufzuchtfutter	12,0-12,5	7,5	9,4	175	50	7,0	4,6	3,0	1,5
Eingliederungsfutter	13,0	4,6	5,7	130	50	5,7	4,0	2,4	1,5
Alleinfutter für Eber									
Aufzuchtfutter	12,5	8,8	10,5	180	40	7,0	4,5	2,7	1,5
Jungeber	12,0	6,0	8,5	140	50	6,0	4,0	2,3	1,5
Deckeber	11,5	5,5	6,5	130	70	6,0	4,0	2,3	1,5
Alleinfutter für Ferkel									
Prestarter	13,4	12,1	13,4	185	-	8,5	6,0	3,7	1,5
Ferkelfutter, 8-20 kg LM	13,4	11,5	12,7	175	35	7,5	5,5	3,5	1,5
Ferkelfutter, 20-30 kg LM	13,2	10,1	11,2	170	30	7,0	5,0	3,3	1,5
Alleinfutter für Mastschweine									
(750 g TZ)									
Anfangsmast / Universalmast	13,0	9,0	10,5	175	30	6,5	4,7	3,0	1,5
Mittelmast	13,0	7,5	9,0	155	30	6,0	4,5	2,3	1,5
Endmast	13,0	6,5	8,0	140	30	5,5	4,0	2,1	1,5

¹durchgängig für Altsauen; ²Alleinfutter für hochtragende Sauen bei hohem Jungsauenanteil.

Standardisierte praecaecale Verdaulichkeiten von Rohprotein und Aminosäuren (GfE 2006, DLG 2014, Grainup 2016¹)

pcv, %	XP	Lys	Met	Cys	Thr	Trp	Val	lle	Leu	Phe	Arg	His
Getreide												
Gerste alt	73	73	82	79	76	76	78	79	79	79	80	78
Gerste neu ¹	72	64	77	80	71	70	77	76	77	77	79	78
Weizen alt	90	88	88	92	90	88	89	92	91	92	92	93
Weizen neu ¹	84	71	86	88	79	82	85	86	86	87	86	87
Triticale alt	84	84	88	87	81	77	84	87	85	89	88	88
Triticale neu ¹	83	74	85	86	75	81	82	83	84	85	85	84
Mais	82	79	85	86	83	82	87	86	89	87	89	87
Hafer	88	95	88	82	90	77	82	82	84	92	93	88
Roggen alt	78	80	85	90	75	78	78	78	79			79
Roggen neu ¹	73	62	75	78	64	65	72	72	74	78	77	75
<u>Eiweißfutter</u>												
SES, 44% XP	82	87	88	79	86	86	82	86	85	86	91	87
Fischmehl	83	87	88	59	88	79	86	87	89	86	88	87
RES	71	73	82	81	68	72	71	74	76	75	83	79
Ackerbohnen	77	82	61	68	75	71	72	77	79	74	89	83
Erbsen	79	84	73	66	75	70	78	79	80	76	89	81
Lupinen	85	84	81	91	83	85	75	84	82	71	92	82
Sojabohnen	76	80	78	75	74	76	74	76	76	77	85	80
Sojaprotein-kon- zentrat	85	89	92	91	89	89	85	89	87	89	92	86
Leinextraktions- schrot	66	64	61	73	79	66	65	64	66	71	83	74
Sonnenblumen- extraktionsschrot	77	77	76	81	77	80	79	80	79	81	91	82
<u>Nebenprodukte</u>												
Weizenkleie	78	71	77	68	66	75	78	73	74	78	83	77
Weizennachmehl	66	81	83	83	74	85	83	82	77	86	87	83
Haferschälkleie	90	88	92	85	87	89	91	91	88	93	93	91
Maiskleber	90	87	97	88	90	86	73	76	79	73	84	73
Süßmolkenpulver	80	97	98	93	89	97	92	91	94	88	86	90

pcv, praecaecale Verdaulichkeit; RES, Rapsextraktionsschrot; SES, Sojaextraktionsschrot; XP, Roh-protein

¹Werte aus Grainup, siehe Vorbemerkung.

Richtwerte für Vitamin- und Spurenelementzusätze je kg Alleinfutter bei 88% TM, Stand September 2019

		Zuchtsauen	Ferkel	N	//ast		
				Anfang	Ende		
Vitamine ¹							
Α	ΙE	3.000-5.000 ^{1,2}	$5.000 - 10.000^2$	5.000^2	4.000^2		
D	ΙE	500	500-1.000	500 ²	300^{2}		
E	mg	60-100	60-100	60-80	60-80		
K ₃	mg	(0-2)	2-4	1-2	0,5-1		
B ₁	mg	2	2-3	2	2		
B ₂	mg	5-7	5-7	4	3		
B ₆	mg	2-4	3-5	4	3		
B ₁₂	mcg	20-25	30-50	20-30	15-25		
Biotin	mcg	200-300	150-250	100-150	50-80		
Cholin	mg	1.200	1.000	800	500		
Folsäure	mg	2-3	0,5-1	0,5	0,3		
Nikotinsäure	mg	20-40	30-40	20-30	15-25		
Pantothensäure	mg	15-20	10-15	10-14	8-12		
Vit. C (bei Stress)	mg	(100-200)	100-150	-	-		
L-Carnitin	mg	50	-	-	-		
Spurenelemente							
Eisen	mg	80-100 ²	100-120 ³	50	0-60 ²		
Kupfer	mg	15-20 ²	20-150 ²	10)-15 ²		
Zink	mg	60-80 ²	70-100 ²	50	0-60 ²		
Mangan	mg	30-50 ²	$30-50^2$	30-50 ²			
Jod	mg	1-1,5 ²	1-1,5 ²	1-1,5 ²			
Selen	mg	0,2-0,42	$0,2-0,4^2$	0,2	2 - 0,3 ²		

¹höherer Wert gilt für Tragefutter.

² Zulässige	e Höchstgehalte je kg Alleinfutter (88 % TM), Stand September 2019
Vitamin A	Ferkel 16.000 IE, Mastschweine 6.500 IE Sauen 12.000 IE
Vitamin D	Ferkel 10.000 IE, Schweine 2.000 IE
Kupfer	Saugferkel und Absetzferkel bis 4 Wochen nach dem Absetzen 150 mg, ab der 5. Woche nach dem Absetzen bis 8 Wochen nach dem Absetzen 100 mg, andere Schweine 25 mg (Hinweis Zifo2: 100 mg als Richtwert hinterlegt)
Zink	Sauen/Ferkel max. 150 mg, Mast- und andere Schweine 120 mg
Selen	max. 0,5 mg (max. 0,4 mg Zulage, max. 0,2 mg über Se-organisch)
Eisen	max. 750 mg ^{3, 4}
Mangan	max. 150 mg
Jod	max. 10 mg

³Eisendrextran bei Saugferkel: 200 mg/Tag einmal in der 1. Lebenswoche und 300 mg/Tag einmal in der 2. Lebenswoche; ⁴Ferkel bis zu 1 Woche vor dem Absetzen: 250 mg/Tag (ausgenommen davon Eisen (II) -carbonat (Siderit)).

Link zu Höchstgehalte Futtermittelzusatzstoffe:

http://www.bvl.bund.de/DE/02_Futtermittel/03_AntragstellerUnternehmen/05_Zusatzstoffe_FM/03_Liste_zugelassene_Zusatzstoffe/fm_liste_zugelassener_zusatzstoffe_node.html

Mineralfutterempfehlung für Zuchtsauen, Ferkel und Mastschweine

Gehalte in % bzw. je kg Mineralfutter (Stand: September 2020)

Schweine		Zucht	sauen	Ferkel		Mastsch	chweine				
					Getreid	e, Soja	mit Molke***				
		Tragend	Säugend		Vormast	Endmast	Vor-/Endmast				
Einsatzrate	%	2,5	3,0	4,0	3,0	3,0	2,5				
Mengenelemente											
Ca	%	20	21*	17,5	19	16,5	17				
P mit Phytase	%	1	3	2,5	1	0	0				
Na	%	6	6	4	4	4	2				
(Mg)	%	1	1	1	1	1	1				
Spurenelemente											
Fe	mg	3.200	2.800	1.200	1.700	2.000	2.000				
Cu	mg	400	350	2.000	200	250	300				
Zn	mg	1.800	1.500	1.500	1.200	1.500	800				
Mn	mg	750	600	700	600	700	700				
J	mg	30	25	16,5	40	50	50				
Se	mg	10	9	7	8	10	10				
Vitamine											
Α	ΙE	200.000	100.000	250.000	170.000	150.000	160.000				
D3	ΙE	20.000	17.000	30.000	17.000	15.000	20.000				
E	mg	4.000	3.000	2.500	3.000	3.000	4.000				
(K3)	mg	80	65	50	50	40	60				
B1	mg	80	65	50	50	40	50				
B2	mg	250	200	150	100	150	120				
B6	mg	150	120	80	80	80	100				
B12	mcg	1.000	800	1.000	800	600	1.000				
Biotin	mcg	12.000	10.000	5.000	4.000	3.000	5.000				
Cholin	mg	40.000	30.000	22.500	25.000	20.000	30.000				
(Betain)	mg	6.000	5.000	4.000	3.000	4.000	4.000				
Folsäure	mg	120	100	20	15	15	20				
Niacin	mg	1.500	1.200	1.000	1.000	1.000	1.200				
Pantothensäure	mg	900	750	350	500	400	600				
L-Carnitin	mg	2000	1.700	1.250	-	-	-				
(Vitamin C)	mg	5.000	4.000	3.000	1.000	1.000	1.000				
Aminosäuren											
L-Lysin	%	7	9,0	12	12	12	10				
DL-Methionin	%	1	2,5	3	3	2	3,0				
L-Threonin	%	1,5	2,5	5	5	3,5	2,5				
L-Tryptophan	%	-	-	0,5	(0,5)**	-	-				
L-Valin	%	-	-	(0,5)	-	-	-				
Phytase: zusätzlich	ne P-Fr	eisetzung c	lurch Phytas	se mind. 1,	1 g/kg Alleinfu	utter	-				
Anmerkung: () kein	Bedar	f bzw. in St	otwendig								

^{*}Bei Einsatz von Futtermitteln mit erhöhtem Kalziumgehalt (z.B. Fischmehl, Grascobs) ist der Ca-Gehalt im Mineralfutter zu reduzieren.

^{**}Bei hohen Maisanteilen ist auf die Tryptophanversorgung zu achten.

^{***}Da Molke-Produkte hinsichtlich der Nährstoffzusammensetzung heterogen sind, sind die genannten Werte nur eine grobe Orientierung. Um eine exakte Rationsberechnung und passende Mineralfutterauswahl vornehmen zu können, müssen die Molkeprodukte regelmäßig untersucht werden.

Gehaltswerte der Futtermittel (Grundlage Zifo2, Stand September 2019)

Kurzliste (1. Zeile: Angaben je kg Frischmasse, 2. Zeile: verdauliches XP + pcv Aminosäuren bzw. bei Futtermitteln mit von 880 g TM abweichenden TM-Gehalten: 2. Zeile: Angaben je kg Trockenfutter (88% TM) und 3. Zeile: verdauliches XP + pcv Aminosäuren

Nr. Futterr	nittelbezeichnung	TM	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Са	Р	vΡ	vP_{Ph}	Na	K	XL
Ti. Tutton	micols o Zolo mang	g	MJ	g	g	g	G	g	g	g	g	g	g	g	g	g	g	g	g	g
4025 Gerste	, 2-zeilig	880	12,63	110 79	3,9 2,50	1,8 1,37	4,1 3.23	3,6 2,58	1,4 0.96	44	530	22	22	0,6	3,5	1,6	2,3	0,3	4,4	22
4125 Tritical	e	880	13,57	106 88	3,5 2,6	1,8 1,5	4,2 3,6	3,3 2,5	1,2 0,9	22	587	35	18	0,4	3,4	1,7	2,2	0,3	4,9	16
4145 Weize	n	880	13,71		3,4 2,4	1,9 1,6	4,5 4,0	3,4 2,7	1,5 1,2	26	594	28	17	0,6	3,3	2,2	2,2	0,2	4,4	18
4205 Körner	mais	880	14,13	90	2,5 1,9	1,8 1,6	3,8 3,3	3,2 2,7	0,7	23	612	17	15	0,4	3,1	0,5	2	0,2	3,6	40
5205 Majeko	ornsilage (MKS), Ganzkorn		10,60 14,35	65 88	1,8 2,4	1,3 1,8	2,8 3,8	2,3 3,2	0,5 0,7	16 22	421 570	5 6	12 16	0,3 0,4	2,3 3,1	1,1 1,5	1,5 2	0,1 0,2	2,7 3,6	27 37
5205 Walsk	omsnage (wixo), Ganzkom	000	14,33	78	2,2	0,0	3,2	2,6	0,6		370		10	0,4	J, i	1,5		0,2	3,0	37
4305 Ackerb	oohnen	880	12,48	260213	16,213,3	1,8 1,1	4,9 3,2	8,9 6,6	2,2 1,6	79	362	35	35	1,4	4,3	1,5	2,8	0,2	10,9	14
4345 Erbser	1	880	13,46	207 172	14,5 12,2	1,9 1,4	4,7 3,2	7,8 5,8	1,9 1,3	57	420	54	31	0,8	4,2	1,9	2,7	0,2	9,7	13
6435 Sojaex	traktionsschrot, 44% XP	880	13,10	440 361	26,9 23,4	5,9 5,2	12,3 10,2		5,9 5,1	60	62	95	59	2,7	6,2	2,2	4	0,2	19,4	12
6436 Sojaex	traktionsschrot, 48% XP	880	14,12	480	29,4 25,6	6,5	13,4 11,2	18,8	6,5 5,6	35	62	100	59	2,8	6,7	2,3	4,3	0,3	20,2	12
6425 Rapse	xtraktionsschrot	890 880	- , -	344 340	17,7 17,5	6,7 6,6	14,7 14,6 11,9	14,5 14,4	4,6	118 117		71 70	70 69	7,7 7,6	10,6 10,5	3,2 3,1	6,9 6,8	0,4 0,4	12,6 12,5	31 30

		ТМ	ME	XP	Lvo	Mot	M+C	Thr	Trn	XF	St	Z	XA	Са	Р	νP	vP _{Ph}	No	K	XL
Nr.	Futtermittelbezeichnung	I IVI	IVI⊏	۸۲	Lys	MEL	IVITC	1111	Trp	٨٢	Si		ΛA	Ca		VP	V Ph	Na	N.	ΛL
		g	MJ	g	g	g	G	g	g	g	g	g	g	g	g	g	g	g	g	g
6175	Weizenkleie	880	8,69	160	6,4	2,3	5,6	5,1	2,5	100	131	56	57	1,6	11,4	3,4	7,4	0,5	10,6	38
0170	Wolzermiere			104	4,6	1,8	4,0	3,4	1,9											
		890	10,34	75	2,9	1,2	2	3,3	0,8	140	0	77	64	8,2	1	0,1	0,6	0,9	7,8	7
6505	Trockenschnitzel	880	10,23	74	2,8	1,2	2	3,3	0,8	138	0	76	63	8,1	1	0,1	0,6	0,9	7,7	7
				29	0,9	0,0	1,0	1,5	0,4											
	Grascobs, 1.Schnitt,	890	7,52	171	7,7	2,6	4,4	6,8	2,6	148	0	89	102	6,2	4	2	2,6	0,5	23,1	33
3074	im Blattstadium	880	7,44	169	7,6	2,6	4,4	6,7	2,6	146	0	88	101	6,2	4	2	2,6	0,5	22,9	33
				85	2,6	0,0	2,5	3,4	1,4											
		900	8,78	90	3,6	1,4	2,3	2,7	0,9	200	35	65	40	4	3	0,7	1,9	1	9	25
4674	Fasermix, 20% XF	880	8,58	88	3,5	1,3	2,2	2,6	0,9	196	34	64	39	3,9	2,9	0,7	1,9	1	8,8	24
				20	0,9	0,0	1,0	1,0	0,4	ļ										
		50	0,71	7	0,5	0,1	0,2	0,4	0,1	0	0	36	4	0,4	0,4	0,3	0,3	0,3	1,3	1
7735	Labmolke	880	12,48	121	8,6	1,7	4,2	7,4	1,9	0	0	640	69	7,2	7,5	6	6	5,7	22	11
				97	6,8	0,0	3,4	5,7	1,5											
5435	Sojaöl	999	39,72	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	998
0 100		880	34,99	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	879
8284	Mineralfutter Ferkel,	950	4,21	205	120	30	30	50	5	0	0	0	750	175	25	22,5	-	40	0	0
	4 Aminosäuren (4%)	880	3,90	190	111	27,8	27,8	46,3	4,6	0	0	0	694	162	23,1	20,8	20,8	37	0	0
8295	Mineralfutter, Anfangsmast (3,0%)	950	4,10	200	120	30	30	50	0	0	0	0	820	190	10	9	9	40	0	0
0200	Time and tell, 7 and 190 mast (6,6 %)	880	3,03	185	111	27,8	27,8	46,3	0	0	0	0	759	176	9,2	8,3	8,3	37	0	0
8296	Mineralfutter, Endmast (3,0%)	950	3,59	175	120	30	30	25	0	0	0	0	860	165	0	0	0	40	0	0
0200	William (0,070)	880	2,27	162	111	27,8	27,8	23,2	0	0	0	0	796	153	0	0	0	37	0	0
8385	Mineralfutter Zuchtsau, säug. (3,0%)	950	2,87	140	90	25	25	25	0	0	0	0	817	210	30	27	27	60	0	0
0000	Willierandtter Zuerttsau, saug. (5,070)	880	2,47	130	83,4	23,2	23,2	23,2	0	0	0	0	757	195	27,8	25	25	55,6	0	0
8386	Mineralfutter Zuchtsau, trag. (2,5%)	950	1,95	95	70	10	10	15	0	0	0	0	860	200	10	9	9	60	0	0
0300	mineranduel Zuonisau, irag. (2,5 %)	880	1,80	88	64,8	9,3	9,3	13,9	0	0	0	0	796	185	9,2	8,3	8,3	55,6	0	0

Gehalte der Futtermittel (1. Zeile: Angaben je kg Frischmasse, 2. Zeile: Angaben je kg Trockenfutter (88 % TM)

Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Са	Р	vΡ	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	G	g	g	g	G	g	g	g	g	g	g	g	g
1. Gr	rünfutter																			
1205	Grünmais	300	3,03	24	0,7	0,4	0,7	0,8	0,2	62	60	36	14	0,6	0,7	0,3	0,5	0,1	3,6	9
1203	Gruffinals	880	8,90	71	2,0	1,1	2,0	2,4	0,5	180	176	106	40	1,8	2,0	1,0	1,3	0,3	10,6	26
1714	Luzerne, 1.Schnitt,	180	1,69	39	1,9	0,5	0,9	1,6	0,6	41	0	3	23	3,2	0,5	0,3	0,4	0,1	5,4	6
17 17	in der Knospe	880	8,25	190	9,2	2,5	4,6	7,6	2,8	201	0	13	113	15,8	2,6	1,3	1,7	0,4	26,4	27
1614	Rotklee, 1.Schnitt,	150	1,44	32	1,5	0,5	0,8	1,3	0,6	29	0	11	18	2,4	0,4	0,2	0,3	0,1	4,8	6
1014	vor der Knospe	880	8,47	185	8,9	3,0	4,8	7,6	3,3	169	0	62	106	14,1	2,6	1,3	1,7	0,4	28,2	35
1014	Wiesengras, 1.Schnitt,	160	1,53	31	1,5	0,5	0,8	1,3	0,6	33	0	16	15	0,9	0,6	0,3	0,4	0,2	4,2	6
1014	im Schossen	880	8,40	172	8,3	2,8	4,5	7,1	3,0	180	0	88	84	4,8	3,2	1,6	2,1	1,1	22,9	34
1634	Kleegras, 1.Schnitt,	160	1,44	34	1,6	0,6	0,9	1,4	0,6	36	0	13	18	1,6	0,7	0,4	0,5	0,1	5,6	5
1004	in der Knospe	880	7,93	189	9,1	3,1	5,0	7,8	3,4	195	0	70	97	8,8	3,9	1,9	2,5	0,4	30,8	27
2. Si	lagen																			
5205	Maiskornsilage (MKS),	650	10,60	65	1,8	1,3	2,8	2,3	0,5	16	421	5	12	0,3	2,3	1,1	1,5	0,1	2,7	27
5205	Ganzkorn	880	14,35	88	2,4	1,8	3,8	3,2	0,7	22	570	6	16	0,4	3,1	1,5	2,0	0,2	3,6	37
5206	Maiskornsilage (MKS),	650	10,66	65	1,8	1,3	2,8	2,3	0,5	16	421	5	10	0,3	2,3	1,1	1,5	0,1	2,7	27
3200	Schrot	880	14,43	88	2,4	1,8	3,8	3,2	0,7	22	570	6	14	0,4	3,1	1,5	2,0	0,2	3,6	37
5224	CCM-Kornspindel-	650	9,95	65	1,7	1,3	2,8	2,3	0,5	23	413	5	10	0,3	2,3	1,1	1,5	0,1	2,7	28
3224	gemisch, 3,5% XF	880	13,47	88	2,3	1,8	3,8	3,2	0,7	31	559	7	13	0,4	3,1	1,5	2,0	0,2	3,6	38
5245	LKS-	500	7,04	48	1,3	1,0	2,0	1,7	0,4	45	270	3	10	0,2	1,8	0,9	1,1	0,1	2,1	20
3243	Lieschkolbensilage	880	12,39	84	2,2	1,7	3,6	3,0	0,6	79	475	5	18	0,4	3,1	1,5	2,0	0,2	3,6	35
2225	Majasilaga kärnarrajah	330	3,49	27	0,7	0,4	0,7	0,9	0,2	61	102	5	13	0,7	0,7	0,4	0,5	0,1	3,3	12
2223	Maissilage, körnerreich	880	9,32	72	2,0	1,1	2,0	2,4	0,5	163	273	13	35	1,8	1,9	1,0	1,3	0,2	8,8	31

Nr.	Futtermittelbezeich-	TM	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	G	g	g	g	G	g	g	g	g	g	g	g	g
2. Si	lagen																			
2211	Grassilage, angewelkt,	350	2,83	63	2,7	1,0	1,4	2,4	0,7	78	0	9	38	2,3	1,4	0,7	0,9	0,2	10,9	14
2014	1.Schnitt, Rispenschieben	880	7,12	158	6,7	2,4	3,5	6,1	1,7	197	0	22	95	5,7	3,5	1,8	2,3	0,6	27,3	35
2634	Kleegrassilage,	350	3,12	68	2,9	1,1	1,5	2,7	0,7	79	0	9	40	2,8	1,3	0,7	0,9	0,2	11,6	13
2034	1.Schnitt, in d. Knospe	880	7,83	172	7,4	2,6	3,8	6,7	1,7	198	0	22	101	7,0	3,3	1,7	2,2	0,4	29,0	33
3. He	eu, Stroh, Cobs, Gr	rünm	ehl																	
3014	Heu Wiese, 1.Schnitt,	860	6,05	114	5,1	1,8	2,9	4,6	1,7	211	0	103	77	4,5	2,9	0,3	1,9	0,3	21,5	26
3014	Rispenschieben	880	6,19	116	5,2	1,8	3,0	4,7	1,8	216	0	106	79	4,6	3,0	0,3	1,9	0,4	22,0	26
3075	Grascobs, 1.Schnitt	890	7,45	165	7,4	2,5	4,3	6,6	2,5	178	0	89	98	5,8	3,4	1,7	2,2	0,5	23,1	30
3074	Grascobs, 1.Schnitt,	890	7,52	171	7,7	2,6	4,4	6,8	2,6	148	0	89	102	6,2	4,0	2,0	2,6	0,5	23,1	33
	im Blattstadium	880	7,44	169	7,6	2,6	4,4	6,7	2,6	146	0	88	101	6,2	4,0	2,0	2,6	0,5	22,9	33
3076	Grascobs, 1.Schnitt,	890	7,37	142	6,4	2,2	3,7	5,7	2,1	214	0	89	93	5,8	3,4	1,7	2,2	0,5	24,0	30
	Rispenschieben	880	7,29	141	6,3	2,2	3,7	5,7	2,1	211	0	88	92	5,7	3,3	1,7	2,2	0,5	23,8	30
3776	Luzernecobs,-grün-	890	6,67	156	7,5	2,1	3,8	6,3	2,3	227	0	36	107	13,4	2,7	1,3	1,7	0,4	19,6	26
	mehl, Beg. Blüte	880	6,59	154	7,4	2,1	3,8	6,2	2,3	224	0	35	106	13,2	2,6	1,3	1,7	0,4	19,4	26
3774	Luzernecobs, -grün-	890	8,67	187	9,0	2,5	4,6	7,5	2,8	165	0	45	120	16,0	3,4	1,7	2,2	0,4	24,0	28
	mehl, v. d. Knospe	880	8,57	185	8,9	2,5	4,5	7,4	2,7	163	0	44	119	15,8	3,3	1,7	2,2	0,4	23,8	27
3125	Gerstenstroh	860	1,90	39	0,8	0,2	0,4	1,5	0,2	374	0	6	52	4,3	0,7	0,1	0,4	1,7	14,6	14
		880	1,94	40	0,8	0,2	0,4	1,6	0,2	383	0	6	53	4,4	0,7	0,1	0,5	1,8	15,0	14
3145	Haferstroh	860	1,86	31	0,6	0,2	0,3	1,2	0,2	378	0	12	56	3,4	1,2	0,1	0,8	1,7	18,1	13
		880	1,90	32	0,6	0,2	0,3	1,3	0,2	387	0	12	57	3,5	1,2	0,1	0,8	1,8	18,5	13
3165	Roggenstroh	860	1,70	32	0,6	0,2	0,3	1,3	0,2	404	0	7	50	2,6	0,9	0,1	0,6	1,3	8,6	11
		880	1,74	33	0,7	0,2	0,3	1,3	0,2	414	0	7	51	2,6	0,9	0,1	0,6	1,3	8,8	11
3185	Weizenstroh	860	1,88	34	0,7	0,2	0,3	1,4	0,2	370	0	7	65	2,6	0,7	0,1	0,4	1,3	9,5	11
- 100		880	1,93	35	0,7	0,2	0,4	1,4	0,2	378	0	7	66	2,6	0,7	0,1	0,5	1,3	9,7	11

		1									1									
Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
4. Ty	pische Eiweißfutte	er																		
4305	Ackerbohnen	880	12,48	260	16,2	1,8	4,9	8,9	2,2	79	362	35	35	1,4	4,3	1,5	2,8	0,2	10,9	14
6015	Bierhefe, trocken	900	12,85	469	31,1	7,1	11,5	22,0	5,3	22	0	17	73	1,8	10,3	5,1	6,7	0,3	13,2	20
0013	Diemeie, trocken	880	12,57	459	30,4	6,9	11,3	21,6	5,2	22	0	17	71	1,8	10,0	5,0	6,5	0,3	12,9	20
7045	Diambata friedb	100	1,43	53	3,5	0,8	1,3	2,5	0,6	2	0	1	8	0,2	1,1	0,6	0,7	0,0	1,5	3
7015	Bierhefe, frisch	880	12,58	462	30,6	7,0	11,4	21,7	5,3	15	0	9	72	1,8	10,0	5,0	6,5	0,3	12,9	27
4345	Erbsen	880	13,46	207	14,5	1,9	4,7	7,8	1,9	57	420	54	31	0,8	4,2	1,9	2,7	0,2	9,7	13
6456	Erdnußextraktions- schrot, 5% XF	880	13,59	500	16,1	5,3	11,6	12,8	4,9	50	84	103	57	1,4	5,9	1,8	3,8	0,4	11,4	12
6455	Erdnußextraktions-	908	13,23	481	15,5	5,0	11,2	12,4	4,7	104	69	94	59	2,3	5,3	1,6	3,4	0,3	12,7	14
0433	schrot, 10% XF	880	12,82	466	15,0	4,9	10,8	12,0	4,6	101	67	91	57	2,2	5,1	1,5	3,3	0,3	12,3	14
4845	Fischmehl, 60-65% XP	900	13,34	608	42,5	15,7	20,7	23,9	6,0	9	0	0	194	42,8	25,4	21,6	21,6	8,8	7,2	61
4043	1 ISCHINETH, 00-03 /0 AF	880	13,04	594	41,5	15,3	20,2	23,4	5,9	9	0	0	190	41,8	24,8	21,1	21,1	8,6	7,0	60
4846	Fischmehl, 65-70% XP	910	13,91	656	47,4	17,4	22,9	26,4	6,7	7	0	0	161	38,9	24,8	21,0	21,0	7,7	6,8	52
1010		880	13,46	634	45,8	16,8	22,1	25,5	6,5	7	0	0	156	37,6	23,9	20,3	20,3	7,5	6,6	50
6625	Kartoffeleiweiß	910	16,27	764	59,4	16,9	27,5	44,3	10,8	7	8	5	29	0,6	4,7	3,3	3,3	0,1	6,8	18
0020	Nationoloiwois	880	15,73	739	57,4	16,3	26,6	42,8	10,4	7	8	5	28	0,6	4,6	3,2	3,2	0,1	6,5	17
6465	Kokosextraktions- schrot	880	10,36	209	5,1	2,7	5,5	6,0	1,6	142	0	105	66	1,5	5,6	1,7	3,7	0,9	20,2	25
6405	Leinextraktionsschrot	880	10,88	339	13,8	6,0	11,7	12,4	5,2	91	0	40	58	4,0	8,4	0,8	5,4	1,0	10,6	24
6406	Leinkuchen,-Expeller	880	11,20	328	13,4	5,8	11,3	12,0	5,0	94	0	38	56	3,7	7,2	0,7	4,7	0,9	10,6	55
6235	Maiskleber	880	16,26	623	10,3	14,8	25,5	20,7	3,4	11	128	5	18	0,8	3,6	0,9	2,3	0,4	0,9	46
7205	Maisschlampa flüssig	70	1,03	20	0,6	0,4	0,8	0,8	0,2	6	6	2	4	0,2	0,6	0,2	0,4	0,1	0,6	8
7205	Maisschlempe, flüssig	880	13,01	253	7,1	4,9	9,6	9,4	2,0	75	71	26	47	2,2	7,6	2,3	4,9	1,1	7,9	103

Nr.	Futtermittelbezeich-	TM	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
4. Ty	pische Eiweißfutte	er																		
6475	Palmkernextraktions- schrot	880	8,68	165	4,5	3,0	4,9	4,9	1,2	175	0	30	38	2,6	6,3	1,9	4,1	0,1	7,0	18
6425	Rapsextraktionsschrot	890 880	10,04 9,93	344 340	17,7 17,5	6,7 6,6	14,7 14,6	14,5 14,4	4,6 4,6	118 117	0 0	71 70	70 69	7,7 7,6	10,6 10,5	3,2 3,1	6,9 6,8	0,4 0,4	12,6 12,5	31 30
		910	12,72	337	18,6	6,6	14,5	14,9	4,6	123	0	68	66	7,5	10,8	3,2	7,0	0,4	13,3	80
6426	Rapskuchen, 8% XL	880	12,30	326	18,0	6,4	14,0	14,4	4,4	119	0	66	64	7,3	10,5	3,1	6,8	0,4	12,9	77
0.40=	5 1 1 450/3/	910	13,54	309	17,0	6,0	13,3	13,7	4,2	112	0	62	60	6,8	10,6	3,2	6,9	0,4	12,2	150
6427	Rapskuchen, 15% XL	880	13,09	299	16,5	5,8	12,8	13,2	4,0	108	0	60	58	6,6	10,2	3,1	6,6	0,4	11,8	145
6445	Sonnenblumenextraktionsschrot, 20% XF	880	10,00	337	11,8	7,4	12,9	12,2	4,4	195	0	70	62	3,5	9,4	3,3	6,1	0,4	11,4	22
6446	Sonnenblumenextrakti- onsschrot, 11% XF	880	10,95	402	14,1	8,8	15,4	14,6	5,2	113	0	91	71	3,9	8,7	3,1	5,7	0,1	11,4	15
4435	Sojabohnen, getoastet	935 880	16,67 15,69	374 352	23,0 21,6	5,0 4,8	10,6 10,0	14,6 13,7	5,0 4,7	58 55	53 50	75 71	50 47	2,7 2,6	6,6 6,2	2,3 2,2	4,3 4,1	0,2 0,2	18,6 17,5	190 179
6434	Sojaextraktionsschrot, 42% XP	880	12,50	420	25,7	5,7	11,7	16,4	5,7	80	60	93	61	3,2	6,5	2,3	4,2	0,3	22,0	15
6435	Sojaextraktionsschrot, 44% XP	880	13,10	440	26,9	5,9	12,3	17,2	5,9	60	62	95	59	2,7	6,2	2,2	4,0	0,2	19,4	12
6436	Sojaextraktionsschrot, 48% XP	880	14,12	480	29,4	6,5	13,4	18,8	6,5	35	62	100	59	2,8	6,7	2,3	4,3	0,3	20,2	12
6439	Sojakuchen, 8% XL	890 880	13,96 13,80	400 396	23,8 23,6	5,6 5,5	11,5 11,4	15,8 15,6	5,5 5,5	58 57	45 44	62 61	58 57	2,7 2,6	6,2 6,2	2,2 2,2	4,0 4,0	0,1 0,1	17,8 17,6	82 81
6447	Sonnenblumenkuchen	880	12,93	219	7,9	4,9	8,5	8,1	2,9	278	0	91	71	3,4	8,3	2,9	5,4	0,1	11,4	150
4365	Süßlupine	880	14,01	331	15,9	2,1	7,0	11,4	2,6	120	65	64	36	2,5	4,5	2,2	2,9	0,5	8,4	77
	Weizenschlempe,	60	0,74	22	0,5	0,3	0,7	0,7	0,2	6	10	2	4	0,2	0,6	0,2	0,4	0,2	0,8	4
7145	flüssig	880	10,82	317	6,6	4,7	10,7	9,7	3,2	90	153	22	53	3,1	9,5	2,9	6,2	2,7	11,4	62

Nr.	Futtermittelbezeich-	TM	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
IVI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
5. Ge	etreide- und Neben	proc	lukte																	
4025	Gerste, 2-zeilig	880	12,63	110	3,9	1,8	4,1	3,6	1,4	44	530	22	22	0,6	3,5	1,6	2,3	0,3	4,4	22
4026	Gerste, mehrzeilig	880	12,54	110	3,9	1,8	4,1	3,6	1,4	46	528	23	22	0,6	3,5	1,6	2,3	0,3	4,4	20
4065	Hafer	880	11,49	108	4,4	1,7	4,8	3,6	1,5	99	393	14	26	1,1	3,2	0,8	2,1	0,3	4,4	46
4075	Haferflocken	910	15,02	117	4,7	1,9	5,2	3,9	1,6	16	592	17	17	0,9	4,0	1,0	2,6	0,3	3,8	50
6065	Haferfuttermehl	909	14,24	138	5,6	2,2	6,2	4,6	1,9	54	506	15	24	1,0	5,2	1,0	3,4	0,1	7,3	73
0003	Halenducinien	880	13,79	134	5,4	2,2	6,0	4,5	1,8	52	490	15	23	1,0	5,0	1,0	3,3	0,1	7,0	71
0075	l lafa na ala #llula ia	908	5,68	68	2,7	1,0	2,4	2,7	1,1	230	150	10	54	1,3	1,5	0,5	1,0	0,4	9,1	30
6075	Haferschälkleie	880	5,50	66	2,6	0,9	2,3	2,6	1,1	223	145	10	52	1,2	1,5	0,4	1,0	0,4	8,8	29
4205	Körnermais	880	14,13	90	2,5	1,8	3,8	3,2	0,7	23	612	17	15	0,4	3,1	0,5	2,0	0,2	3,6	40
6215	Maisfuttermehl	880	13,12	104	4,5	1,9	4,1	4,0	1,0	52	355	40	26	0,7	4,4	0,9	2,9	0,4	1,8	63
6225	Maiskeimextraktions- schrot	880	10,89	116	5,3	2,1	4,4	4,4	1,3	71	384	49	38	0,4	6,6	1,3	4,3	0,8	7,0	15
6235	Maiskleber	880	16,26	623	10,3	14,8	25,5	20,7	3,4	11	128	5	18	0,8	3,6	0,9	2,3	0,4	0,9	46
6246	Maiskleberfutter, 23-30% XP	880	11,09	227	7,0	3,6	8,3	8,1	1,1	79	177	20	53	1,3	8,4	1,7	5,4	2,4	12,3	36
4285	Milokorn, Hirse	880	12,87	114	2,6	1,9	3,9	3,6	1,2	46	519	8	30	0,8	2,8	0,8	1,8	0,6	2,7	30
4105	Roggen	880	13,30	92	3,4	1,5	3,6	3,0	1,0	20	568	55	18	0,8	2,9	1,5	1,9	0,2	5,3	16
6125	Roggengrießkleie	880	10,29	140	5,1	2,3	5,4	4,6	1,5	58	220	77	40	1,5	9,9	3,0	6,5	0,7	12,3	33
6135	Roggenkleie	880	9,45	143	5,2	2,4	5,5	4,7	1,5	73	113	92	53	1,5	9,9	3,0	6,5	0,7	12,3	32
4125	Triticale	880	13,57	106	3,5	1,8	4,2	3,3	1,2	22	587	35	18	0,4	3,4	1,7	2,2	0,3	4,9	16
4145	Weizen	880	13,71	121	3,4	1,9	4,5	3,4	1,5	26	594	28	17	0,6	3,3	2,2	2,2	0,2	4,4	18
4155	Weizenflocken	880	13,52	121	3,4	1,9	4,5	3,4	1,5	20	596	20	15	0,6	3,3	1,0	2,2	0,1	4,4	16

Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	vΡ	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
5. Ge	etreide- und Neben	prod	dukte																	
6145	Weizennachmehl	880	14,20	160	6,4	2,4	5,6	5,1	2,4	20	480	53	30	0,8	6,5	2,0	4,2	0,1	7,9	40
6155	Weizenfuttermehl	880	12,67	160	6,4	2,4	5,6	5,1	2,4	40	370	55	35	1,1	7,1	2,1	4,6	0,3	11,4	40
6165	Weizengrießkleie	880	10,57	160	6,4	2,3	5,6	5,1	2,5	80	215	59	49	1,2	9,1	2,7	5,9	0,5	10,6	40
6175	Weizenkleie	880	8,69	160	6,4	2,3	5,6	5,1	2,5	100	131	56	57	1,6	11,4	3,4	7,4	0,5	10,6	38
6. Br	auerei- und Brenn	ereip	rodu	kte																
0045	D: 1 () 1	900	12,85	469	31,1	7,1	11,5	22,0	5,3	22	0	17	73	1,8	10,3	5,1	6,7	0,3	13,2	20
6015	Bierhefe, trocken	880	12,57	459	30,4	6,9	11,3	21,6	5,2	22	0	17	71	1,8	10,0	5,0	6,5	0,3	12,9	20
7045	D: 1 ((: 1	100	1,43	53	3,5	0,8	1,3	2,5	0,6	2	0	1	8	0,2	1,1	0,6	0,7	0,0	1,5	3
7015	Bierhefe, frisch	880	12,58	462	30,6	7,0	11,4	21,7	5,3	15	0	9	72	1,8	10,0	5,0	6,5	0,3	12,9	27
0005	Diamento and the alice	900	8,78	238	8,5	5,0	9,8	8,5	3,4	152	35	9	43	3,2	5,4	1,9	3,5	0,4	0,7	77
6025	Biertreber, trocken	880	8,59	233	8,3	4,9	9,5	8,4	3,3	149	34	9	42	3,2	5,3	1,8	3,4	0,4	0,7	75
7005	Diament on friend	240	2,31	61	2,2	1,3	2,5	2,2	0,9	43	12	3	11	0,9	1,4	0,5	0,9	0,1	0,2	20
7025	Biertreber, frisch	880	8,47	223	7,9	4,7	9,1	8,0	3,1	157	43	11	40	3,2	5,3	1,8	3,4	0,4	0,7	72
7000	Diamenahan alliant	247	2,37	62	2,2	1,3	2,5	2,2	0,9	40	4	1	11	0,9	1,5	0,5	1,0	0,1	0,2	21
7026	Biertreber, siliert	880	8,46	219	7,8	4,6	9,0	7,9	3,1	141	15	5	38	3,2	5,3	1,8	3,4	0,4	0,7	74
6025	Malekainaa	920	8,30	272	9,5	3,5	7,9	8,7	2,7	133	50	125	64	2,4	7,5	2,6	4,8	0,6	19,3	10
6035	Malzkeime	880	7,94	260	9,1	3,4	7,5	8,3	2,6	127	48	120	61	2,3	7,1	2,5	4,6	0,5	18,5	10

Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Са	Р	vΡ	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g

7. Rüben- und Nebenprodukte

5505	Zuckerrübe	230	3,02	18	0,8	0,0	0,7	0,3	0,1	20	0	149	18	0,5	0,3	0,0	0,2	0,2	1,8	1
3303	Zuckerrube	880	11,54	70	2,9	0,1	2,7	1,3	0,5	75	0	569	70	2,0	1,3	0,1	0,9	0,8	7,0	5
4505	Zuckerrübenschnitzel	916	11,41	73	3,2	1,2	2,0	3,3	0,8	78	0	608	69	6,2	0,9	0,1	0,6	2,4	11,0	6
4505	Zuckerruberischinizer	880	10,96	70	3,1	1,1	1,9	3,1	0,8	75	0	584	66	6,0	0,9	0,1	0,6	2,3	10,6	6
7515	Nagagahnitzal	127	1,35	14	0,8	0,2	0,4	0,6	0,2	32	0	4	10	1,2	0,1	0,0	0,1	0,5	0,9	3
7515	Nassschnitzel	880	9,38	99	5,7	1,6	2,7	4,5	1,1	220	0	27	67	8,5	0,8	0,1	0,5	3,3	6,2	18
7525	Pressschnitzel, siliert	270	3,05	25	1,5	0,4	0,7	1,1	0,3	54	0	9	18	3,3	0,3	0,0	0,2	0,2	1,4	1
7323	Fressscrinitzer, sillert	880	9,93	83	4,8	1,3	2,3	3,7	0,9	176	0	31	58	10,9	0,9	0,1	0,6	0,5	4,6	4
6505	Trockenschnitzel	890	10,34	75	2,9	1,2	2,0	3,3	0,8	140	0	77	64	8,2	1,0	0,1	0,6	0,9	7,8	7
0303	Hockenschilitzei	880	10,23	74	2,8	1,2	2,0	3,3	0,8	138	0	76	63	8,1	1,0	0,1	0,6	0,9	7,7	7
6515	Melasseschnitzel,	896	11,16	7	3,3	1,4	2,4	3,9	1,0	0	179	11	87	9,5	0,7	0,1	0,4	1,5	12,9	131
0313	18% Zucker	880	10,96	7	3,3	1,3	2,3	3,8	0,9	0	176	11	85	9,3	0,7	0,1	0,4	1,5	12,7	128
7545	Mologoo (Zuokorrüba)	780	10,28	105	2,6	1,7	3,1	5,4	0,8	0	0	509	90	2,0	0,4	0,0	0,3	5,9	42,1	0
7545	Melasse (Zuckerrübe)	880	11,60	119	3,0	1,9	3,4	6,1	1,0	0	0	574	102	2,2	0,4	0,0	0,3	6,7	47,5	0

8. Kartoffel- und Nebenprodukte

5605	Vartaffal (rah)	220	2,78	21	1,1	0,4	0,7	0,9	0,3	6	156	7	14	0,1	0,6	0,3	0,4	0,1	4,8	1
3003	Kartoffel (roh)	880	11,11	85	4,4	1,5	2,7	3,4	1,2	24	625	27	55	0,4	2,2	1,1	1,4	0,5	19,4	4
E64E	Kartoffel, roh, siliert,	300	4,08	27	1,4	0,5	0,9	1,1	0,4	8	218	8	20	0,1	0,8	0,4	0,5	0,2	6,6	1
5615	16% Stärke	880	11,98	79	4,1	1,3	2,5	3,2	1,1	25	639	25	58	0,4	2,2	1,1	1,4	0,5	19,4	4
EGOE	Kartoffel, gedämpft,	220	3,30	22	1,1	0,3	0,6	0,8	0,2	6	147	1	15	0,2	0,6	0,3	0,4	0,0	4,8	1
5625	15% Stärke	880	13,22	86	4,5	1,3	2,2	3,0	1,0	25	590	5	60	0,7	2,2	1,1	1,4	0,0	19,4	5
5635	Kartoffel, gedämpft,	220	3,33	24	1,2	0,4	0,8	0,9	0,3	8	166	1	16	0,2	0,4	0,2	0,3	0,0	4,8	1
3033	siliert, 16% Stärke	880	13,33	95	4,9	1,6	3,2	3,5	1,2	33	663	5	65	0,7	1,8	0,9	1,1	0,0	19,4	4

		1											ı							
NI	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
Nr.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
8. Ka	artoffel- und Neber	prod	dukte										•							
7605	Kartoffelschälabfälle,	110	1,36	12	0,6	0,2	0,4	0,4	0,1	5	33	3	7	0,0	0,3	0,1	0,2	0,1	2,4	0
7605	roh	880	10,91	92	4,8	1,5	2,9	3,5	1,1	40	264	26	55	0,4	2,2	0,6	1,4	0,5	19,4	4
7625	Kartoffelschälabfälle,	108	1,52	17	0,9	0,3	0,5	0,6	0,2	7	70	2	9	0,1	0,3	0,1	0,2	0,0	2,4	1
7025	gedämpft	880	12,40	136	7,0	2,2	4,2	5,1	1,6	54	572	13	74	0,7	2,2	0,6	1,4	0,0	19,4	5
7645	Kartoffelschlempe,	60	0,72	18	1,0	0,2	0,5	0,8	0,1	4	1	1	8	0,2	0,4	0,2	0,3	0,0	3,3	1
7645	frisch	880	10,49	270	14,0	3,4	7,2	12,4	1,4	63	14	10	117	2,5	6,4	3,2	4,2	0,5	48,4	15
7625	Kartoffelpresspülpe,	180	2,26	9	0,5	0,1	0,3	0,3	0,1	37	70	1	6	0,1	0,5	0,2	0,3	0,0	4,0	1
7635	siliert	880	11,03	43	2,2	0,7	1,3	1,6	0,5	183	341	5	31	0,6	2,4	1,2	1,5	0,1	19,4	4
0005	Kartoffelpülpe,	880	10,90	61	3,2	1,0	1,9	2,3	0,7	166	372	2	32	0,2	2,2	1,1	1,4	0,1	19,4	5
6635	getrocknet	880	10,90	61	3,2	1,0	1,9	2,3	0,7	166	372	2	32	0,2	2,2	1,1	1,4	0,1	19,4	5
4615	Kartoffelflocken	880	13,34	78	4,1	1,4	2,3	3,1	1,5	26	650	35	47	0,4	2,3	1,1	1,5	1,0	21,1	4
4625	Kartoffelstärke	880	14,46	3	0,2	0,1	0,1	0,1	0,0	4	834	0	4	0,2	0,5	0,3	0,3	0,2	0,9	1
222	16 . 6 1 1 10	910	16,27	764	59,4	16,9	27,5	44,3	10,8	7	8	5	29	0,6	4,7	3,3	3,3	0,1	6,8	18
6625	Kartoffeleiweiß	880	15,73	739	57,4	16,3	26,6	42,8	10,4	7	8	5	28	0,6	4,6	3,2	3,2	0,1	6,5	17
4664	Maniokmehl, Typ 55	880	12,84	24	0,9	0,3	0,6	0,9	0,2	49	602	28	51	1,7	0,7	0,1	0,5	0,2	7,9	6
4665	Maniokmehl, -schnitzel	880	13,42	23	0,9	0,3	0,6	0,8	0,2	28	665	26	33	1,4	1,0	0,1	0,6	0,4	7,0	5

										•	•									
Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	Ð	g	g	g	g	g	g	g	g
9. M	olkereiprodukte																			
7715	Buttermilch	80 880	1,34 14,76	30 329	2,3 24,9	0,7 8,1	1,0 10,6	1,3 13,9	0,4 4,5	0 0	0 0	37 410	6 68	0,9 9,5	0,7 7,6	0,6 6,1	0,6 6,1	0,3 3,2	1,4 15,8	5 59
7735	Labmolke	50 880	0,71 12,48	7 121	0,5 8,6	0,1 1,7	0,2 4,2	0,4 7,4	0,1 1,9	0 0	0 0	36 640	4 69	0,4 7,2	0,4 7,5	0,3 6,0	0,3 6,0	0,3 5,7	1,3 22,0	1 11
7736	Labmolke, eingedickt	120 880	1,70 12,48	16 121	1,2 8,6	0,2 1,7	0,6 4,2	1,0 7,4	0,3 1,9	0	0 0	87 640	9 69	1,0 7,2	1,0 7,5	0,8 6,0	0,8 6,0	0,8 5,7	3,0 22,0	2 11
7725	Magermilch	86 880	1,34 13.75	31 318	2,3 23,9	0,8 7,8	1,0 10,2	1,3 13,4	0,4 4,4	0	0	41 423	7 72	1,2 12,0	0,9 9,6	0,7 7,7	0,7 7,7	0,3 3,2	1,0 10,6	1
6725	Magermilchpulver	941 880	14,71 13,75	343 321	24,6 23,0	8,2 7,7	11,0 10,3	14,8 13,9	4,7 4,4	0	0	453 424	78 73	13,2 12,3	10,2 9,5	8,1 7,6	8,1 7,6	5,1 4,8	13,2 12,3	5 5
7765	Milchzuckermelasse	300 880	3,40 9,97	68 198	4,8 14,2	1,0 2,8	2,3 6,9	4,1 12,1	1,1 3,1	0	0	105 308	77 225	10,2 29,9	5,4 15,8	4,3 12,7	4,3 12,7	4,8	12,0 35,2	5 13
7766	Milchzuckermelasse, proteinarm	225 880	2,59 10,11	24 94	1,2	0,1 0,6	0,4	1,4	0,1 0,4	0	3	101 395	51 200	11,0 43,1	7,1 27,8	5,7 22,2	5,7 22,2	14,1 4,7 18,4	11,3	3 13
6765	Molke, entzuckert	952	11,21	228	4,7 15,8	3,1	1,5 7,5	5,5 12,4	3,5	0	0	359	227	37,0	14,7	11,7	11,7	18,0	44,0 45,7	12
6735	Molkenpulver	960	10,37 13,54	211 127	14,6 9,1	2,9 1,8	6,9 4,4	7,8	3,2 2,0	0	0	332 712	210 82	34,2 7,9	13,6 8,2	10,8 6,6	10,8 6,6	16,6 6,2	42,2 24,0	11
7755	(Labmolke) Permeatmolke	880 50	12,41 0,65	116 2	8,4 0,1	1,7 0,0	4,0 0,0	7,1 0,1	1,8 0,0	0	0	653 36	75 8	7,2 1,2	7,5 0,7	6,0 0,5	6,0 0,5	5,7 0,4	22,0 1,3	10
	Sauermilcherzeug-	880 160	11,39 3,18	37 64	1,5 5,1	0,3 1,9	0,6 2,4	1,1 2,9	0,3 0,8	0	0	638	133	20,9 1,1	11,8 1,2	9,4 1,1	9,4 1,1	7,5 0,4	22,0 1,4	11 29
5715	nisse (Joghurt, Quark)	880	17,47	352	28,2	10,2	13,0	16,2	4,4	0	0	2 34	47	6,2	6,8	6,1	6,1	2,5	7,7	158
7745	Sauermolke	56 880	0,76 11,95	9 137	0,6 9,8	0,1 2,0	0,3 4,8	0,5 8,4	0,1 2,2	0 0	0 0	528	6 99	1,1 17,2	0,9 14,2	0,7 11,3	0,7 11,3	0,4 5,7	1,4 22,0	1 11
7746	Sauermolke, einge- dickt	120 880	1,63 11,95	19 137	1,3 9,8	0,3 2,0	0,7 4,8	1,1 8,4	0,3 2,2	0 0	0 0	72 528	13 99	2,4 17,2	1,9 14,2	1,5 11,3	1,5 11,3	0,8 5,7	3,0 22,0	1 11
5705	Vollmilch, Kuh	135 880	3,11 20,27	35 231	2,7 17,5	1,0 6,7	1,4 9,0	1,7 11,3	0,5 3,2	0 0	0 0	47 304	7 47	1,2 7,6	1,0 6,3	0,9 5,7	0,9 5,7	0,4 2,8	1,5 9,6	44 285

Nr.	Futtermittelbezeich-	TM	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	vΡ	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
10. V	Veitere Nebenprod	ukte	aus d	der L	eben	smit	telve	rarbe	itun	g und	d Ene	ergie	gewii	าทนท	g					
5185	Altbrot	650	10,85	80	2,1	1,2	2,8	2,4	0,9	9	417	39	18	0,6	1,6	0,5	1,0	2,7	3,3	20
3103	Albiol	880	14,69	108	2,9	1,6	3,7	3,3	1,3	12	565	53	25	0,8	2,2	0,7	1,4	3,6	4,4	26
6185	Backabfälle	880	14,79	106	2,8	1,5	3,7	3,2	1,2	11	574	107	26	0,1	2,3	0,7	1,5	10,9	8,8	28
EGEE	Vortoffal (frittiant)	500	10,38	38	2,0	0,6	1,0	1,3	0,4	11	250	2	26	0,3	1,0	0,5	0,6	1,0	8,3	125
5655	Kartoffel (frittiert)	880	18,27	66	3,4	1,0	1,7	2,3	0,7	18	440	4	45	0,5	1,7	0,8	1,1	1,8	14,5	220
7145	Weizenschlempe,	60	0,74	22	0,5	0,3	0,7	0,7	0,2	6	10	2	4	0,2	0,6	0,2	0,4	0,2	0,8	4
7 143	flüssig	880	10,82	317	6,6	4,7	10,7	9,7	3,2	90	153	22	53	3,1	9,5	2,9	6,2	2,7	11,4	62
6144	Weizenschlempe,	900	10,70	344	7,2	5,1	11,7	10,5	3,5	68	26	14	50	3,2	9,7	2,9	6,3	2,8	12,1	55
0144	trocken	880	10,46	336	7,0	5,0	11,4	10,3	3,4	66	26	13	49	3,1	9,5	2,9	6,2	2,7	11,8	54
7205	Majasahlampa flüssig	70	1,03	20	0,6	0,4	0,8	0,8	0,2	6	6	2	4	0,2	0,6	0,2	0,4	0,1	0,6	8
7205	Maisschlempe, flüssig	880	13,01	253	7,1	4,9	9,6	9,4	2,0	75	71	26	47	2,2	7,6	2,3	4,9	1,1	7,9	103
6204	Maisschlempe, trocken	900	10,86	324	9,1	6,3	12,3	12,1	2,6	92	83	14	54	3,2	7,7	2,3	5,0	2,8	7,2	64
0204	Maisschlenipe, Hocken	880	10,62	317	8,9	6,2	12,0	11,8	2,5	90	81	14	53	3,1	7,6	2,3	4,9	2,7	7,0	63
4535	Futterzucker	990	15,66	1	0,0	0,0	0,0	0,0	0,0	0	0	984	1	0,0	0,0	0,0	0,0	0,0	0,0	0
4000	rullerzucker	880	13,92	1	0,0	0,0	0,0	0,0	0,0	0	0	875	1	0,0	0,0	0,0	0,0	0,0	0,0	0
11. T	ypische Faserträg	er																		
1071	5 : 000/ \/5	900	8,78	90	3,6	1,4	2,3	2,7	0,9	200	35	65	40	4,0	3,0	0,7	1,9	1,0	9,0	25
4674	Fasermix, 20% XF	880	8,58	88	3,5	1,3	2,2	2,6	0,9	196	34	64	39	3,9	2,9	0,7	1,9	1,0	8,8	24
4075	F : 000/ VF	900	8,37	80	3,2	1,2	2,0	2,4	0,8	300	30	60	35	5,0	5,0	1,3	3,2	1,0	9,0	20
4675	Fasermix, 30% XF	880	8,18	78	3,1	1,2	2,0	2,3	0,8	293	29	59	34	4,9	4,9	1,2	3,2	1,0	8,8	20
7685	Obsttrester,	220	2,32	15	0,4	0,1	0,3	0,4	0,1	48	0	24	5	0,4	0,2	0,1	0,1	0,2	1,5	9
7085	Apfeltrester	880	9,28	58	1,5	0,6	1,4	1,7	0,4	190	0	98	21	1,8	0,9	0,3	0,6	0,7	6,2	37
6432	Sojaschalen	880	7,12	115	7,3	1,3	3,1	4,1	1,4	336	32	22	43	5,3	1,3	0,4	0,8	0,2	12,6	22

Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	М+С	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
11. T	ypische Faserträg	er																		
6075	Haferschälkleie	908	5,68	68	2,7	1,0	2,4	2,7	1,1	230	150	10	54	1,3	1,5	0,5	1,0	0,4	9,1	30
0073	Tialerschainleie	880	5,50	66	2,6	0,9	2,3	2,6	1,1	223	145	10	52	1,2	1,5	0,4	1,0	0,4	8,8	29
6175	Weizenkleie	880	8,69	160	6,4	2,3	5,6	5,1	2,5	100	131	56	57	1,6	11,4	3,4	7,4	0,5	10,6	38
6505	Trockenschnitzel	890	10,34	75	2,9	1,2	2,0	3,3	0,8	140	0	77	64	8,2	1,0	0,1	0,6	0,9	7,8	7
0303	Hockenschillzei	880	10,23	74	2,8	1,2	2,0	3,3	0,8	138	0	76	63	8,1	1,0	0,1	0,6	0,9	7,7	7
3076	Grascobs, 1.Schnitt,	890	7,37	142	6,4	2,2	3,7	5,7	2,1	214	0	89	93	5,8	3,4	1,7	2,2	0,5	24,0	30
0070	Rispenschieben	880	7,29	141	6,3	2,2	3,7	5,7	2,1	211	0	88	92	5,7	3,3	1,7	2,2	0,5	23,8	30
4685	Lignozellulose	920	2,39	14	0,6	0,2	0,3	0,4	0,1	695	0	40	4	0,9	0,2	0,0	0,1	0,5	11,0	2
1000		880	2,29	13	0,5	0,2	0,3	0,4	0,1	665	0	38	4	0,9	0,2	0,0	0,1	0,5	10,5	2
12. N	/lineral- und Ergän	zung	sfutte	er																
8284	Mineralfutter Ferkel,	950	4,21	205	120	30,0	30,0	50,0	5,0	0	0	0	750	175	25,0	22,5	22,5	40,0	0,0	0
0204	4 Aminosäuren (4%)	880	3,90	190	111	27,8	27,8	46,3	4,6	0	0	0	694	162	23,1	20,8	20,8	37,0	0,0	0
8295	Mineralfutter, Anfangs-	950	4,10	200	120,	30,0	30,0	50,0	0,0	0	0	0	820	190	10,0	9,0	9,0	40,0	0,0	0
0200	mast (3,0%)	880	3,03	185	111	27,8	27,8	46,3	0,0	0	0	0	759	176	9,2	8,3	8,3	37,0	0,0	0
8296	Mineralfutter,	950	3,59	175	120	30,0	30,0	25,0	0,0	0	0	0	860	165	0,0	0,0	0,0	40,0	0,0	0
0200	Endmast (3,0%)	880	2,27	162	111	27,8	27,8	23,2	0,0	0	0	0	796	153	0,0	0,0	0,0	37,0	0,0	0
8294	Mineralfutter, Mast,	950	3,17	155	100	30,0	30,0	25,0	0,0	0	0	0	850	170	0,0	0,0	0,0	20,0	0,0	0
0201	Molke (2,5%)	880	1,51	144	92,6	27,8	27,8	23,2	0,0	0	0	0	788	157	0,0	0,0	0,0	18,6	0,0	0
8385	Mineralfutter Zuchtsau,	950	2,87	140	90,0	25,0	25,0	25,0	0,0	0	0	0	817	210	30,0	27,0	27,0	60,0	0,0	0
3000	säugend (3,0%)	880	2,47	130	83,4	23,2	23,2	23,2	0,0	0	0	0	757	195	27,8	25,0	25,0	55,6	0,0	0
8386	Mineralfutter Zuchtsau,	950	1,95	95	70,0	10,0	10,0	15,0	0,0	0	0	0	860	200	10,0	9,0	9,0	60,0	0,0	0
3000	tragend (2,5%)	880	1,80	88	64,8	9,3	9,3	13,9	0,0	0	0	0	796	185	9,2	8,3	8,3	55,6	0,0	0
4915	Monokalziumphosphat	950	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	950	164	229	206	206	0,0	0,0	0
.510	ononaiziainphoophat	880	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	880	152	212	191	191	0,0	0,0	0

Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Са	Р	vΡ	vP _{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
12	Minoral und Fraän	71100	cfutt/	r.																

12. Mineral- und Ergänzungsfutter

4905	Dikalziumphosphat	950	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	950	228	176	123	123	0,0	0,0	0
4905	Dikaiziumphosphat	880	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	880	211	163	114	114	0,0	0,0	0
4925	Kohlensaurer Kalk	997	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	997	380	0,4	0,3	0,3	0,0	0,0	0
4925	Koniensaurer Kaik	880	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	880	336	0,4	0,2	0,2	0,0	0,0	0
4945	Viehsalz	990	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	990	0,0	0,0	0,0	0,0	361	0,0	0
4945	VIETISAIZ	880	0	0	0,0	0,0	0,0	0,0	0,0	0	0	0	880	0,0	0,0	0,0	0,0	321	0,0	0

13. Aminosäuren

6005	L Lygin HCI	985	15,99	780	780	0,0	0,0	0,0	0,0	0	0	0	205	0,0	0,0	0,0	0,0	0,0	0,0	0
0905	L-Lysin-HCl	880	14,28	697	697	0,0	0,0	0,0	0,0	0	0	0	183	0,0	0,0	0,0	0,0	0,0	0,0	0
6925	DL-Methionin	997	20,30	990	0,0	990	990	0,0	0,0	0	0	0	7	0,0	0,0	0,0	0,0	0,0	0,0	0
0925	DL-Methionin	880	17,92	874	0,0	874	874	0,0	0,0	0	0	0	6	0,0	0,0	0,0	0,0	0,0	0,0	0
-	MHA - flüssig	880	16,90			650	650													
-	MHA - fest	980	16,90			830	830													
6935	L-Threonin	990	20,09	980	0,0	0,0	0,0	980	0,0	0	0	0	10	0,0	0,0	0,0	0,0	0,0	0,0	0
0933	L-THIEOHIII	880	17,86	871	0,0	0,0	0,0	871	0,0	0	0	0	9	0,0	0,0	0,0	0,0	0,0	0,0	0
6945	Tryptophon	990	20,09	980	0,0	0,0	0,0	0,0	980	0	0	0	10	0,0	0,0	0,0	0,0	0,0	0,0	0
0943	Tryptophan	880	17,86	871	0,0	0,0	0,0	0,0	871	0	0	0	9	0,0	0,0	0,0	0,0	0,0	0,0	0

MHA, Methionin-Hydroxy-Analog.

			1																	
Nr.	Futtermittelbezeich-	ТМ	ME	XP	Lys	Met	M+C	Thr	Trp	XF	St	Z	XA	Ca	Р	νP	vP_{Ph}	Na	K	XL
INI.	nung	g	MJ	g	g	g	g	g	g	g	g	G	g	g	g	g	g	g	g	g
14. Č	Disaaten	•																		
4435	Sojabohnen, getoastet	935	16,67	374	23,0	5,0	10,6	14,6	5,0	58	53	75	50	2,7	6,6	2,3	4,3	0,2	18,6	190
4433	Sojabornien, getoastet	880	15,69	352	21,6	4,8	10,0	13,7	4,7	55	50	71	47	2,6	6,2	2,2	4,1	0,2	17,5	179
440E	Lainaaman	910	17,41	226	9,2	4,0	7,8	8,2	8,2	66	0	34	45	2,5	4,9	2,0	3,2	0,8	7,3	332
4405	Leinsamen	880	15,32	199	8,1	3,5	6,9	7,2	7,2	58	0	30	40	2,2	4,3	1,9	3,1	0,7	6,4	292
4405	Danasaman	900	18,38	203	12,2	4,0	8,9	9,0	2,7	74	0	41	40	4,5	7,0	2,8	4,6	0,3	8,0	400
4425	Rapssamen	880	16,17	179	10,7	3,5	7,8	7,9	2,4	65	0	36	35	4,0	6,2	2,7	4,5	0,2	7,0	352
4445	Sonnenblumensamen	880	13,81	169	6,1	3,8	6,6	6,3	2,2	215	0	0	30	2,5	3,3	1,2	2,2	0,2	5,5	316
15. C	ble	1	l																	l I
E 40 E	Colosi	999	39,72	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	998
5435	Sojaöl	880	34,99	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	879
E 40E	Danail	999	38,92	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	998
5425	Rapsöl	880	34,28	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	879
- 44 -	Cana ambluman #1	999	38,92	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	998
5445	Sonnenblumenöl	880	34,28	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	879
E 40E	I aim #I	999	38,92	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	998
5405	Leinöl	880	34,28	0	0,0	0,0	0,0	0,0	0,0	0	0	0	1	0,0	0,0	0,0	0,0	0,0	0,0	879

Einsatz von Futtermitteln (Orientierungshilfe)

Angaben in Prozent im Trockenfutter (88 % TM)

	Fei	kel	Zuchts	sauen	Mastsch	weine
	FAF I	FAF II	tragend	säu- gend	Anfangs- mast	End- mast
Trockenfutter						
Ackerbohnen	;	5	8	15	15	25
Backabfälle, Brot	1	5	20	30	50	
Bierhefe	;	5	10	10	10	
Biertreber	;	5	40	15	17	
Erbsen	10	20	8	20	20	25
Futterzucker	;	5	5	10	20	
Gerste	8	0	80	80	80	
Grascobs	4	4	25	5	5	
Hafer		5	30	10	10	
Haferflocken	1	0	5	10	10	
Kartoffeleiweiß		5	3	5	5	
Kartoffelflocken	1	0	20	30	30	
Kartoffelpülpe	!	5	10	5	10	
Kartoffelschrot	1	0	20	30	40	
Leinsamen	!	5	10	10	3	
Leinschrot	!	5	15	10	10	
Leinkuchen	!	5	10	10	7	
Luzernecobs	4	4	15	5	5	
Maiskörner	3	0	20	30	40	
Maiskleber	4	4	15	5	10	
Malzkeime	;	3	15	5	5	
Maniok	2	0	10	20	30	
Molkepulver	!	5	10	20	20	
Rapssamen	!	5	5	10	8	
Rapsextraktionsschrot	5	10	8	10	10	10
Rapskuchen (15% XL)	!	5	5	10	10	
Roggen	10	15	20	30	30	50
Roggenfuttermehl	1	0	10	20	30	
Roggenkleie		5	20	10	10	
Sojabohnen (geröstet)	8	3	5	10	10	
Sojakuchen	1	2	5	15	15	

	Fei	kel	Zuchts	sauen	Mastsch	veine
	FAF I	FAF II	tragend	säu- gend	Anfangs- mast	End- mast
Sojaextraktionsschrot	2	0	5	20	20	
Sonnenblumen		-	10	5	5	
Sonnenblumenschrot		-	10	5	5	
Sonnenblumenkuchen		-	15	5	5	
Süßlupine	;	5	8	10	15	20
Triticale	2	0	20	30	50	
Trockenschnitzel	ţ	5	20	5	10	
Weizen	5	0	20	50	50	
Weizenfuttermehl	1	0	10	20	30	
Weizenkleie	;	5	20	10	10	
Melasseschnitzel, 18 % Zucker	5		10	20	30	
Feucht-, Fließfutter						
Maiskornsilage-Ganz- korn/Schrot	3	0	20	50	50	
CCM	1	0	20	50	50	
Lieschkolbenschrot		5	30	10	20	
Kartoffel, gedämpft		-	20	30	40	
Kartoffel, roh		-	20	20	15	
Kartoffelschalen, ge- dämpft		-	20	10	20	
Kartoffelschalen, roh		-	20	10	10	
Kartoffelpresspülpe		-	10	5	10	
Zuckerrüben, frisch		-	20	30	30	
Melasse		5	10	5	15	
Naß-/ Pressschnitzel	;	5	10	5	10	
Schlempen		-	10	5	10	
Vollmilch	2	0	20	25	25	
Mager-/Buttermilch	2	0	10	20	20	
Molke, 5,6% TM	1	0	20	20	20	
Molke, 12% TM	1	0	20	20	30	
Permeatmolke		-	20	20	20	
Milchzuckermelasse		-	15	15	15	
<u>Futteröl</u>	4	1	2	4	2	

Futterzusatzstoffe

Futtersäuren (Auszug aus den Firmensortimenten), Stand 01/2021 Minimale Dosis ausreichend für gute Wirkung, höhere Dosis in Problemfällen

Produktname	technische	TM	ME	Ca	Р	Na	pH-Sen-		Dosierung, ii	n %
(Firma)	Zusammensetzung	g	MJ	g	g	g	kung	Zuchtsauen	Ferkel	Mastschweine
Säuren flüssig										
Ameisensäure	85% Ameisensäure	850	5,6	-	-	ı	+++		0,3-1,0	
Propionsäure	Propionsäure	990	20,7	-	-	-	+		0,6-1,2	
BERGO [®] Stabilomix S (Bergophor)	Propionsäure, Natriumpropionat, Sorbinsäure	750	14,5	-	-	58	+	1,5-3,0 l pro 1.000 Liter Flüssigfu 0,4-0,7 0,5-1,0 0,4		Flüssigfutter
BERGO®	Ameisen-, Propion-, Milchsäure,							0,4-0,7	0,5-1,0	0,4-0,7
APM-NC liquid (Bergophor)	Ammoniumformiat	750	8,5	-	-	-	++	0,1	I-0,3 in Tränkv	vasser
Selacid [®] Green Growth liquid (Milkivit- T. Nutrition)	Ameisen-, Essig-, Propion-, Sorbin-, Zitronensäure, Ammoniumformiat, MCFA	770	10	-	-	-	+	0,2-0,4	0,5-1,0	0,2-0,4
MIRAVIT [®] PigCid (Agravis)	Ameisen-, Milch-, Propionsäure		6,5	-	-	41	+++		0,1-1,0	
Schaumacid [®] Protect (Schaumann)	Ameisensäure, Ammoniumfor- miat, Milch-, Propionsäure, Am- moniumpropionat, Zitronensäure, MCFA	870	9,0	-	-	-	Ja	0,3-0,7	0,5-1,0	0,3-0,5
Schaumacid [®] Clean (Schaumann)	Ameisen-, Ligninsulfonsäure	735	8,5	-	-	-	Ja	0,1% bei kontinuierlicher Fütterung: 0,3% be starker Keimbelastung, 2-4% zur Reinigung		

Produktname	technische	TM	ME	Ca	Р	Na	pH-Sen-		Dosierung, ii	n %
(Firma)	Zusammensetzung	g	g	g	g	g	kung	Zuchtsauen	Ferkel	Mastschweine
Schaumacid [®] S (Schaumann)	Ameisen-, Milch-, Propion-, Ben- zoesäure, MCFA	885	11,1	1	-	-	Ja	0,3-0,5	0,3-0,7	0,3-0,5
Schaumacid [®] H (Schaumann)	Ameisensäure, Ammoniumfor- miat, Milch-, Propionsäure, Am- moniumpropionat, Zitronen-, Sor- binsäure	845	10,8	-	-	-	Ja	0,7-1,0	0,3-0,7	0,3-0,5
Bonimal Z Liquid Acid (Baywa)	Ameisen-, Milch-, Propion-, Es- sig-, Zitronensäure, Natriumfor- miat, Kupfersulfat	260	2,7	ı	-	-	+++	0,6	0,8	0,6
ADDCON XL 2.0 (ADDCON)	Ameisensäure, Natriumformiat			1	-	105	Produkt 2,8	0,3-0,5	0,5-0,7	0,3-0,5
ADDCON XNC (ADDCON)	Ameisen-, Propion-, Milchsäure, Ammoniumformiat			-	-	-	Produkt 4-5	0,4-0,7	0,5-0,9	0,4-0,7
KOFA Protect (ADDCON)	Natriumbenzoat, Propionsäure, Natriumpropionat, Natriumfor- miat, Ameisensäure			-	-	68	Produkt 4-5	0,3-0,5		
Clex [®] blue drink (Ahrhoff)	Ameisen-, Essig-, Orthophos- phor-, Zitronensäure, Calcium- propionat, Kaliumsorbat, Betain	800	10,7	ı	ı	ı	+++	tragend 20-30 g/Tag säugend 50-80 g/Tag	5-15 g/Tag	20-25 g/Tag
Clex [®] gold drink (Ahrhoff)	Sorbin-, Ameisen-, Essig-, Milch-, Propion-, Zitronensäure, Ammo- niumformiat, Betain	800	10,7	ı	ı	ı	+++	tragend 25-35 g/Tag säugend 30-60 g/Tag	5-15 g/Tag	20-30 g/Tag
Blattifluid Säuremix (PROFUMA)	Ameisen-, Propion-, Milchsäure, Aminosäuren-Zink-, Kupferchelat					54	++	1-2 kg/t Allei	nfutter bzw. 1	kg/t Flüssigfutter
Multi Schmatz 80 (Blatterspiel)	Ameisensäure, Natriumformiat	860		-	-	100	+++	0,3	0,5	0,2-0,3
Fra BLP liquid A (Pigs XL)	Mono- und Diglyceride der But- tersäure, Milchsäure, phytogene Zusätze	590	9,0	-	-	-	Ja	0,05-0,10	0,05-0,25	0,05-0,10

Produktname	technische	TM	ME	Ca	Р	Na	pH-Sen-		Dosierung, i	า %
(Firma)	Zusammensetzung	g	g	g	g	g	kung	Zuchtsauen	Ferkel	Mastschweine
Säuren										
fest										
BERGO [®] Formacid (Bergophor)	Ameisen-, Milch-, Fumar, Kiesel- säure	980	5,8	-	-	-	++		0,5-1,0	
BERGO® Formacid Plus (Bergophor)	Ameisen-, Milch-, Fumar, Kiesel- säure, Benzoesäure gecoatet, Sorbinsäure	980	8,5	-	-	-	++		1,0	
BERGO [®] Acid (Bergophor)	Ameisen-, Propionsäure, Vermi- culit	600	11,0	ı	-	-	+	0,3		
BERGO [®] Stabilo Acid G (Bergophor)	Propionsäure, Ammoniumpropionat, Kieselsäure	580	11,5	-	-	-	+		0,3-0,5	
MIRAVIT LactAcid (Agra- vis)	Milch-, Ameisen-, Fumar-, Sorbin-, Zitronensäure	920	7,1	1	-	21	++		0,5-1,0	
CaPlus FL (Dr. Eckel)	Ameisen-, Milch-, Zitronensäure	975		220	-	-	Nein		> 0,3-1,	0
AntaCid FL (Dr. Eckel)	Ameisen-, Milchsäure, Natrium- formiat, Kieselsäure	995		1	-	2,2	Ja		0,1-1,0	
ACIDMIX S6 (Salvana)	Ameisen-, Phosphor-, Zitronen-, Sorbinsäure, Natriumdiformiat, Calciumpropionat, MCFA	940	4,0	6	9	90	+++	tragend 0,5 - 1,0 säugend 1,0-2,0	Absetzer 1,0 - 1,5 Aufzucht 1,0 - 2,0	0,5-1,0
Multi-Acid (Salvana)	Ameisen-, Milch-, Sorbinsäure, Ammoniumpropionat, Calciumcitrat	950	5,8	63	-	-	+++	0,5-1,0	0,5-1,5	0,5-1,0
PHYTO-FLEX (Salvana)	Benzoesäure, ätherische Öle	950	2,2	0,9	1,5	-	+	0,6-1,2		0,6-1,2

Produktname	technische	TM	ME	Ca	Р	Na	pH-Sen-		Dosierung, ir	ı %
(Firma)	Zusammensetzung	g	g	g	g	g	kung	Zuchtsauen	Ferkel	Mastschweine
Zitronensäure	92% Zitronensäure	920	9,5	-	-	-	+		1,0 - 2,0	
i-Futtersäure- mix Quattro (Invaso)	Ameisen-, Milch-, Fumar-, Phos- phorsäure, Calciumcitrat	925	4,2	197	24	1	++	0,5-1,0	0,5-1,0	0,3-0,5
Clex Beta-Inu- lin met blue (Ahrhoff)	Orthophosphor-, Ameisen-, Zitro- nen-, Kieselsäure, MCFA	950	8,5	15,5	2,5	-	+	0,8-1,5	1,5-2,5	0,5-2,0
Selacid [®] MP (Milkivit - T. Nu- trition)	Ameisen-, Milch-, Zitronen-, Es- sig-, Propion, Sorbinsäure, Am- moniumformiat	800	4,0	-	-	-	++	0,4-0,6	0,5-1,0	0,4-0,7
Troumix [®] Me- gacid Plus (Milkivit - T. Nutrition)	Ameisen-, Zitronen-, Sorbin-, Benzoesäure, Calciumformiat, MCFA, Butyrat, Präbiotikum	960	10,8	32	1	2	+		0,5-1,0	
Fumarsäure	99% Fumarsäure	990	11,5	-	-	-	++		1,5-2,5	
SanoCid MIX (Sano-Grafen- wald)	Fumar-, Zitronen-, Sorbinsäure, Natriumformiat	900	4,5	-	-	236		C),2-0,5 (max. 1	,0%)
Detacid G (Schaumann)	Ameisen-, Propion-, Zitronen-, Milch-, Sorbinsäure	880	4,7	1	1	-	Ja	0,4-0,9	0,7-1,3	0,5-0,8
Schaumacid [®] Protect G (Schaumann)	Ameisensäure, Ammoniumfor- miat, Milch-, Propionsäure, Am- moniumpropionat, Zitronensäure, Monoglyceride	915	8,0	-	-	ı	Ja	0,3-0,7	0,5-1,0	0,3-0,6
Bonimal Z OptiAcid (Baywa)	Ameisen-, Milch-, Fumar-, Ortho- phosphor-, Zitronensäure, Calci- umcitrat	890	7,2				+++	0,5	0,7	0,5
Bonimal Z ProfiAcid (Baywa)	Monoglyceride mittelkettiger Fett- säuren, Monoglyceride aus But- tersäure, Propionsäure	880	19,9				+	0,15-0,20	Absetzer 0,3 - 0,4 Aufzucht 0,25	0,15-0,20

Produktname	technische	TM	ME	Ca	Р	Na	pH-Sen-		Dosierung, i	n %
(Firma)	Zusammensetzung	g	g	g	g	g	kung	Zuchtsauen	Ferkel	Mastschweine
Blattisan SK 2 (PROFUMA)	Benzoe-, Ameisen-, Fumar-, Milch-, Sorbinsäure	950		39	2	1,9	+++		0,5-2,0	
FORMI Farm (ADDCON)	Ameisensäure, Natriumformiat, Phytogene		6,0	-	-	146	Produkt 3-4	0,5-0,7	0,7-1,0	0,5-0,7
FORMI 3G (ADDCON)	Ameisensäure, Natriumformiat, Glycerin-Mono-Laurat		8,0	-	-	146	Produkt 3-4	0,5-1,0	0,7-1,2	0,5
Fra BLP dry A (Pigs XL)	Mono- und Diglyceride der But- tersäure, Milchsäure, Phytogene	940	8,3	-	-	-	Ja	0,1-0,5	0,1-0,35	0,03-0,1
Blattisan SK Phyto (PROFUMA)	Benzoesäure, Kieselgur, ätherische Öle	950		19	-	30	+	2,0	0,5-2,0	2,0
Blattisan Strepto Acid (PROFUMA)	Monolaurinsäure, mittelkettige Fettsäuren	900		-	-	3,4	+++	0,5		
Likracid Dry (Likra West)	Ammoniumformiat, Milch-, Ameisen-, Fumarsäure	980	3,8				+		0,5-1,5	
Salze										
Ca-Formiat	Ca-Salz der Ameisensäure	990	3,3	305	-	-	-		0,8-1,5	
Na-Formiat	Na-Salz der Ameisensäure	990	3,3	-	-	330	-		0,8-1,8	
FORMI® (ADDCON)	97% Kaliumdiformiat	900	4	-	-	-	+	0,6-1,8		
Na-Butyrat (ADIMIX)	30% Buttersäure	900		-	-	300	-	0,15-0,20		
Ca-Propionat	Ca-Salz der Propionsäure	990	16	205	_	-	-	1,0-1,8		
Na-Propionat	Na-Salz der Propionsäure	990	15,9	20	-	210	-	1,0-1,8		

Nicht - Stärke - Polysaccharide (NSP) und Enzyme

Gehalte an NSP (g/kgTM)¹

Futtermittel	Rohfaser	β-Glucane	Pentosane	NSP gesamt
Weizen	20-24	2-15	55-95	75-106
Roggen	22-32	5-30	75-91	107-128
Triticale	30	2-20	54-69	74-103
Gerste	42-93	15-107	57-70	135-172
Hafer	80-123	30-66	55-69	120-296
Mais	19-30	1-2	40-43	55-117
Weizenkleie	106-136	*	150-250	220-337
Sojaschrot	34-99	*	30-45	180-227

¹abhängig von Sorte, Standort, Erntebedingungen.

Enzyme und Enzymwirkungen

Enzyme	Wirkung ¹	Einsatz			
Amylasen	Stärkeabbau (Dextrin, Zucker)	Getreide beim Absatzferkel			
Cellulasen	Zelluloseabbau zu niedrigen Verbindungen und Zucker	Rohfaser in allen, besonders blatt- und halmreichen Futtermitteln			
Glucanasen	Glucanabbau zu Oligo-sac- chariden und Glukose	Gerste und Roggen, besonders bei Geflügel			
Pentosanasen/Xylanasen	Pentosanabbau, Xylanabbau	Getreide- /Sojaextraktions-schrot- rationen (Ferkel, Vormast)			
Phytasen	Freisetzen von Phytin-P	Phytinreiche Rationen (Getreide, Hülsenfrüchte, Ölsaaten)			
Proteinasen	Proteinabbau zu Peptiden und Aminosäuren	verschiedene Eiweißfuttermittel			

¹abhängig von: Gehalt an NSP > 15%, Substratspezifität, Leistungsniveau, Vorlaufzeit, pH-Wert, Temperatur, Wassergehalt.

Verdaulicher Phosphor und Phytaseaktivität

Einordnung der Futtermittel in Klassen der Verdaulichkeit (DLG 2014)

P-Verdaulichkeit, %	Futtermittel						
10	Melasseschnitzel, Futterrüben, Trockenschnitzel, Stroh						
20	Heu, Körnermais						
25	Hafer, Haferschälkleie, Kartoffeldampfschalen,						
30	Grünmais, Leinextraktionsschrot, Rapsextraktionsschrot, Sojaschalen, Weizenfuttermehl, Weizengrießkleie						
35	Biertreber (frisch), Malzkeime, Rapskuchen, Sonnenblumenkuchen						
40	Ackerbohnen, Pressschnitzel, Rapssaat, Sojabohnen, Sojakuchen, Sojaextraktionsschrot, Sonnenblumenextraktionsschrot, Weizenkleie						
45	Gerste, Roggen						
50	Bierhefe (flüssig/getrocknet), Biertreber (frisch), Erbsen, Grünfutter, Grünmehl, Kartoffeln, Kartoffelpülpe, Lupinen, Luzernegrünmehl, Triticale						
55	Maiskornsilage (Ganzkorn, Schrot), Maissilage						
60	Gersten-/Maisschlempe, Weizen						
70	Dicalciumphosphat, Kartoffeleiweiß						
80	Fischmehl, Mono-Dicalciumphosphat, Sauer- /Süßmolke, Weizenschlempe (frisch),						
85	Buttermilch, Magermilch (-pulver), Monocalciumphosphat						
90	Vollmilch (frisch/getrocknet), Mononatriumphosphat						

Durch den Zusatz mikrobieller Phytase wird eine deutliche Steigerung der Verdaulichkeit des Phosphors aus pflanzlichen Komponenten erreicht. Für die pflanzlichen Komponenten kann bei Phytasezusatz in der Regel mit einer Verdaulichkeit von mindestens 65% gerechnet werden. Bei höherer Phytasedosierung kann die P-Verdaulichkeit bis zu 70-75% betragen, vorausgesetzt es ist genügend Phytat-P vorhanden.

Mikrobielle Phytase

- Phytase ist der Name einer Gruppe von Enzymen, die Phytinsäure abbauen und somit das gebundene Phosphat freisetzen und den Schweinen zugänglich machen
- Mikrobielle Phytase wird als Eiweißkörper verdaut
- Angestrebte P-Ersparnis durch den Phytaseeinsatz: 1,00 g P (Monocalciumphosphat, MCP)
 bzw. 1,15 g P (Dicalciumphosphat, DCP) bzw. 0,8 g verdaulicher P

Produktbeispiele von Phytasen auf dem Markt (Herstellerangaben, Stand 08/2022)

	Handelsname (Vertreiber/Hersteller)	Einheit	Kenn- nummer	Dosierungsempfehlungen für 1 g P-Ersparnis (U/kg Alleinfutter) ¹
3- Phytase	Natuphos (BASF)	FTU	4a1600	500
	Natuphos E (BASF)	FTU	4a27	300
	Axtra® PHY (Biochem)	FTU	4a24	250
6-	Finase® EC (Dr. Eckel)	FTU	4a12	400
Phytase	Quantum® Blue (Dr. Eckel)	FTU	4a19	250 (Mast, Sauen), 500 (Ferkel)²
	Ronozyme® HiPhos (DSM)	FYT	4a18	500
	Optiphos® (Huvepharma)	OTU	4a16	125 (Mast, NT-Sauen), 250 (Ferkel, lakt. Sauen)

¹U, Units oder FTU oder FYT oder PPU oder OTU; ²laut Hersteller entspricht die zugelassene Mindestdosierung beim Ferkel einer Freisetzung von 1,5 g MCP.

- Die gesetzliche Mindestdosierung je kg Futter ist unbedingt einzuhalten. Die Mindestdosierung des Gesetzgebers stellt jedoch in der Regel keine Einsatzempfehlung dar.
- Die Einsatzempfehlungen der Phytasehersteller sind in der Regel höher als die oben aufgelistete herkömmliche "Standarddosierung". Mit einer zusätzlichen Phytasedosierung können noch weiterer Phosphor sowie zusätzlich Nährstoffe bzw. Mengen- und Spurenelemente freigesetzt werden.
- Die Berechnung der Phosphorversorgung erfolgt immer auf Basis des verdaulichen Phosphors.
- Bei der Absenkung des Phosphorgehaltes ist auf eine entsprechende Kalziumabsenkung zu achten, um das Verhältnis von Ca zu verd. P nicht auszuweiten.

Notwendige Phytasegehalte im Mineralfutter (bei U/kg Alleinfutter)

Mineralfutteranteil, % _	Mineralfutter-Phytase (U/kg)							
, 70 =	125	500	750	1.000				
1,0	12.500	50.000	75.000	100.000				
2,0	6.250	25.000	37.500	50.000				
2,5	2,5 5.000		30.000	40.000				
3,0	4.167		25.000	33.333				
3,5	3.572	14.286	21.429	28.571				
4,0	3.125	12.500	18.750	25.000				
5,0	2.500	10.000	15.000	20.000				

Futtermittelqualität, -eigenschaften und -hygiene

Säurebindungsvermögen (SBV) im Schweinefutter

Ziel Zur Unterstützung der Magensäuerung sollte das Säurebindungs-vermögen

des Futters nicht höher als 700 mmol HCl/kg Futter sein

Erläuterung Unter Säurebindung versteht man die Menge an HCl, die notwendig ist, um den pH-Wert des Futters auf einen im Magen physiologischen Wert von pH 3,0

abzusenken

Vorteile – stärkere Durchsäuerung des Futters im Magen (pH-Senkung)

bessere Proteinverdauung / höhere Futterausnutzung

- wirksamere Keimbarriere / weniger Durchfall

Einsatzzeitpunkt Absetzen, Futterwechsel, Umstallen, Hochleistungsphasen, vor allem Ferkelfutter

Umsetzung

 Absenkung XP-Gehalt bei gleichzeitigem Ausgleich mit kristallinen Aminosäuren

Einsatz pufferarmer Mineralfutter bzw. weniger Mineralfutter

- Zulage organischer Säuren

Orientierungswerte SBV (mmol/kg) von Einzel- und Mischfutter (frisch)

Futtermittel	SBV (mmol/kg)	Futtermittel	SBV (mmol/kg)
Weizen	380 (330-440)	Mineralfutter (mit Phytase)	
Gerste	350	Ferkel	4.000-5.800
Mais	320	Ferkel-Diätfutter	3.500
Maiskornsilage, CCM	350	Mast	3.900
Triticale	460	Zucht	4.000-4.600
Roggen	370		
Hafer	400	Alleinfutter	
Haferflocken	350	Ferkelfutter, hofeigen	600-800
Weizenkleie	840	Mastfutter, hofeigen	700-900
SES, 44% XP	1.300		
SES, 48% XP	1.360		
Sojaschalen	1.210		
Kartoffeleiweiß	1.080		
Bierhefe	1.200		
Ackerbohnen	800		
Erbsen	700		
Lupinen	1.060		
Magermilchpulver	1.450		
Molkepulver	900-2.030		
Milchzuckermelasse	960		
Labmolke/Sauermolke	400		
Kaseinpulver	900		
Grünmehl/Cobs	1.100		

Kationen-Anionen-Bilanz bei Zuchtsauen "Geburtsfutter"

Ziel Absenkung des Harn-pH auf < 7

- Verringerung der Keime im Harn

- weniger Infektionen

- weniger MMA

Wann? Maximal 8 Tage vor bis 2 Tage nach dem Abferkeln!

Wie? Kationen (Ca, Mg, K, Na) senken, Anionen (P, S, Cl) erhöhen.

Berechnung Kationen-Anionen-Bilanz (KAB, mmol/kg TM)¹ = $50 \times Ca + 83 \times Mg + 26 \times K + 44 \times Na - 59 \times P - 62 \times S - 28 \times Cl$

Statt Schwefel kann annähernd auch der Gehalt an Methionin und Cystein (mit Faktor 13) eingesetzt werden, wenn nicht größere Mengen an Sulfaten enthalten sind.

Futtermittel	Ca	Mg	K	Na	Р	M + C	CI	KAB
Trockenschnitzel	9,7	2,5	9,0	2,4	1,1	2,9	1,2	896
Grascobs	5,8	1,6	19,9	0,5	3,0	4,2	9,3	470
SES 44% XP	3,1	3,0	22,0	0,2	7,0	15,2	0,3	366
Weizenkleie	1,8	5,3	12,0	0,5	13,0	6,1	1,5	- 24
Gerste	0,8	1,3	5,0	0,3	3,9	4,8	1,5	- 43
Kohlensaurer Kalk	381,4	1,6	0,0	0,0	0,4	0,0	0,9	19.179
Dicalciumphosphat	240,0	0,0	0,0	0,0	185,0	0,0	0,0	1.085
Monocalciumphosphat	164,0	0,0	0,0	0,0	229,0	0,0	0,0	-5.311
Ca-Formiat	303,0	0,0	0,0	0,0	0,0	0,0	0,0	15.150
DL-Methionin	0,0	0,0	0,0	0,0	0,0	988,0	0,0	- 12.844
Phosphorsäure (H ₃ PO ₄)	0,0	0,0	0,0	0,0	316,0	0,0	0,0	- 18.644

$Harn-pH = 6,19 + 0,003 \times KAB + 3 \times 10^{-6} \times KAB^{2}$

K	KAB			
100% TM	88% TM	-		
+ 500	+440	8,5		
+ 400	+352	7,9		
+ 300	+264	7,4		
+ 200	+176	6,9		
+ 100	+88	6,5		
+/- 0	0	6,2		
- 100	-88	5,9		
- 200	-176	5,7		
- 400	-352	5,4		

"Harnsäuerung": 50% Säugefutter + 50% Gerste ⇒ Harn-pH < 7,0

99% Säugefutter/Gerste + 1% Methionin ⇒ Harn-pH < 6.5

Vorsicht: Kein säuerndes Futter an Ferkel und Mastschweine, ausreichende Was-

serzufuhr beachten, Futterverweigerung möglich

¹Mineralstoffe in g/kg TM.

Mikrobiologische Beschaffenheit von Futtermitteln

Qualitätsbeschreibung (Qualitätsstufe QS) nach VDLUFA 28.4.1

- Qualitätsstufe (QS) 1: normal alle Keimgruppen Keimzahlstufe 1 (Keimzahlstufen bis höchstens zum Orientierungswert)
- Qualitätsstufe (QS) 2: geringgradig oder mäßig herabgesetzt
 ≥ 1 Keimgruppe in Keimzahlstufe 2 (Keimzahlstufen leicht erhöht bis erhöht)
- Qualitätsstufe (QS) 3: herabgesetzt oder deutlich herabgesetzt
 ≥ 1 Keimgruppe in Keimzahlstufe 3 (Keimzahlstufen deutlich erhöht)
- Qualitätsstufe (QS) 4: Unverdorbenheit nicht gegeben
 ≤ 1 Keimgruppe in Keimzahlstufe 4 (Keimzahlstufen überhöht bis stark überhöht)

QS1	QS2	QS3	QS4	
eine Ver- uffassung / entspricht ent orbenheit		entspricht noch	entspricht nicht	
keine Bedenken	keine Bedenken	möglicherweise ein- geschränkt	möglicherweise er- heblich einge- schränkt	
			ggf. Risikoanalyse	
	Keimbelastung nigen, verschr und hochleiste Nachkontroller	g (Futter trocknen, rei- neiden; nicht an junge ende Tiere verfüttern; n)	nicht verfüttern	
	keine	keine keine Bedenken Bedenken Maßnahmen Keimbelastung nigen, verschr und hochleiste Nachkontroller	keine keine möglicherweise ein-	

Keimgruppen KG	Einstufung	Bakteriologie / Mykologie	Gattungen
KG 1	produkttypisch		Gelbkeime, Pseudomonas / Enterobacteriaceae, sonstige Bakterien
KG 2	Verderb anzeigend	Mesophile, aerobe Bakterien	Bacillus, Staphylococcus/ Micrococcus
KG 3	Verderb anzeigend		Streptomyceten
KG 4	produkttypisch		Schwärzepilze, Acremonium, Verticillium, Fusarium, Aureobasidium, sonstige Pilze
KG 5	Verderb anzeigend	Schimmel- und Schwärzepilze	Aspergillus, Penicillium, Scopulariopsis, Wallemia, Monascus, Geotrichum, sonstige Pilze
KG 6	Verderb anzeigend		Mucorales
KG 7	Verderb anzeigend	Hefen	Hefen (alle Gattungen)

Orientierungswerte für Flüssigfutter

Orientierungswert	Flüssigfutter	nach LUFA NRW 2017 (vorläufige Werte) in Anwendung bei TGD Bayern e.V.
KG 1-3 Bakterien ¹	≤ 10 ⁷ KbE/g [*]	≤ 1,0 x 10 ⁶ KbE/g
KG 4-6 Schimmelpilze	≤ 10⁴ KbE/g	≤ 5,0 x 10 ³ KbE/g
KG 7 Hefen	≤ 10 ⁵ KbE/g [*]	≤ 1,0 x 10 ⁶ KbE/g*)

¹exclusiv Milchsäurebakterien;*KbE/g=Kolonienbildende Einheiten/g Futter.

Orientierungswerte (Keimzahlstufe 1) bis Keimzahlstufe 4 (stark erhöht) für Einzel- und Mischfuttermittel

(nach VDLUFA Methodenbuch III, 28.4.1, Anwendung bei TGD Bayern e.V.)

u.	ıfen		Einheiten	Einzelfuttermittel							Misch	Mehlförmige Mischfutter- mittel	
Keimgruppen KG	Keimzahlstufen	Legende: ≤ kleiner gleich;	Koloniebildende Einheiten (KbE)/g Futter	Gerste ¹	Hafer¹	Mais¹	Weizen¹, Roggen¹	Extraktions- schrote	Maiskorn-si- lage	Stroh ¹	Ferkel	Mast- und Zucht-	
	1	≤	6/:	20	50	2	5	1	0,4	100	5	6	
KG	2	>	x10° KbE/g	20	50	2	5	1	0,4	100	5	6	
1	3	>	1 ₉ 0	100	250	10	25	5	2	500	25	25	
	4	>	×1	200	500	20	50	10	4	1.000	50	60	
	1	≥	/g	1	1	0,5	0,5	1	0,2	2	0,5	1	
KG	2	>	x10 ⁶ KbE/g	1	1	0,5	0,5	1	0,2	2	0,5	1	
2	3	>	0 _e ŀ	5	5	2,5	2,5	5	1	10	2,5	5	
	4	>	×	10	10	5	5	10	2	20	5	10	
	1	≥	/g	0,05	0,05	0,05	0,05	0,1	0,03	0,15	0,1	0,1	
KG	2	>	x10 ⁶ KbE/g	0,05	0,05	0,05	0,05	0,1	0,03	0,15	0,1	0,1	
3	3	>	90	0,25	0,25	0,25	0,25	0,5	0,15	0,75	0,5	0,5	
	4 > ×	×1	0,5	0,5	0,5	0,5	1	0,3	1,5	1	1		
	1	≤	6/:	40	200	20	30	10	5	200	30	50	
KG 4	2	>	x10³ KbE/g	40	200	20	30	10	5	200	30	50	
	3	>	03	200	1000	100	150	50	25	1.000	150	250	
	4	>	×1	400	2000	200	300	100	50	2.000	300	500	
	1	≤	6/:	30	50	30	20	20	5	100	20	50	
KG	2	>	x10³ KbE/g	30	50	30	20	20	5	100	20	50	
5	3	>	03	150	250	150	100	100	25	500	100	250	
	4	>	×	300	500	300	200	200	50	1.000	200	500	
	1	≤	6/ <u>-</u>	2	2	5	2	1	5	5	5	5	
KG	2	>	KbE/g	2	2	5	2	1	5	5	5	5	
6	3	>	×10 ³	10	10	25	10	5	25	25	25	25	
	4	>	X	20	20	50	20	10	50	50	50	50	
	1	≤	<u>=</u> /g	100	200	60	30	30	1.000	400	50	80	
KG	2	>	KbE/g	100	200	60	30	30	1.000	400	50	80	
7	3	>	×10 ³	500	1.000	300	150	150	5.000	2.000	250	250	
	4	>	×	1.000	2.000	600	300	300	10.000	4.000	500	800	

¹Erntefrische Produkte können wesentlich höhere Keimgehalte aufweisen.

Bakterien-, Pilz- und Hefegehalt sind gleich gewichtet. Falls ein Bereich erhöhte Werte aufweist, wird die Gesamtfutterqualität herabgestuft. Werden spezielle Verderb anzeigende Bakterienoder Schimmelpilzarten (z.B. Bacillus, Mucorales,...) gefunden, wird die Futterqualität schon bei niedrigeren Gehalten herabgestuft.

Wichtige Schimmelpilze und ihre Mykotoxine in Futtermitteln

Schimmelpilze	Mykotoxine (Pilzgifte)	Mögliche Krankheitserscheinungen
Feldpilze		
Fusarien hauptsächlich in Weizen und Mais; rötliche Körner, Taubährigkeit, sichtbare Pilzgeflechte auch in Gerste, Hafer möglich	Zearalenon (ZEA)	Mastschweine/Sauen: Scham- und Gesäugeschwellung; Scheiden-/Mastdarmvorfall; Eierstockzysten; Schwellung Gesäugeleiste (auch bei Ebern); Pseudobrunst; Scheinträchtigkeit Ferkel/weibliche Läufer: untergewichtig; Grätscher; Scheiden-, Zitzenschwellung
	Deoxynivalenol (DON)	Alle: Futterverweigerung; Erbrechen; blutiger Durchfall; krankheitsanfällig; Ödeme; ner- vöse Störungen, immunsuppressiv Sauen: Aborte; Milchmangel; Umrauschen Ferkel: untergewichtig
vor allem in Getreide, aber auch Bohnen, Sojabohnen	T2/HT2	Alle: verminderter Futterverzehr, Haut- und Schleimhautläsionen, Immunsuppression, Erbrechen, Futterverweigerung
hauptsächlich in Mais, seltener Hafer und andere Getreidearten	Fumonisin (FB1 + FB2)	Alle: Lungenödeme, Leberveränderungen
Mutterkornpilze (MK) alle Getreidearten und Grä- ser, hauptsächlich in Roggen und Triticale	Ergotalkaloide	Sauen (selten): Milchmangel; Totgeburten; Futter-verweigerung; kleine Würfe Ferkel: Kümmerer; häufig geringere Zunahmen; abgestorbene Ohren und Schwänze (Nekrosen)
Lagerpilze (Penicillien, Aspe	rgillen)	
In verschimmeltem Getreide, verschleppten Schimmelnes- tern (verklebte, graue Nester)	Ochratoxin A (OTA)	Alle: Nierenschäden (Durst) Leberschäden; blutiger Durchfall; Wachstumsstörungen; häufiger Harnabsatz
i.d.R. Importware Erdnüsse, Ackerbohnen, Baumwollsamen, Fischmehl, Hafer, Mais, Reis, Sojaboh- nen, Weizen	Aflatoxin B1	Alle: Leberschäden, verringerte Zunahmen, ab 2 mg/kg tödlich Toxischer/kanzerogener Metabolit wird über Milch ausgeschieden Sauen: Aborte Ferkel: immunsupprimierte Tiere, Kümmerer

Häufige Schimmelpilze in Stroh und mögliche Risiken

Die Bedeutung von Schwärzepilze-Toxinen für die Tiergesundheit ist weiterhin nicht geklärt. Nach aktuellen Untersuchungen sind auch im Stroh erhebliche Gehalte an Fusarientoxinen (über 1 mg DON/kg TM) möglich.

Produktionstechnische Schutzmaßnahmen vor Mykotoxinen

- Verhinderung/Verringerung der Pilze:
 - pflanzenbauliche Maßnahmen: Resistente Sorten, Standortwahl, Fruchtfolge, Bodenbearbeitung (Pflügen)
 - Maßnahmen bei Ernte: schonender Drusch (Bruchkorn), reinigen
 - optimale Lagerung: < 13% Feuchte, belüften, reinigen, nachtrocknen, nachreinigen, Säurekonservierung
- Verschneiden mit unbelastetem Getreide,
 - Ausnahme: Aflatoxin B1 und Mutterkorn: siehe rechtliche Vorgaben)
- Kontrolle! Belastetes Futter eventuell gar nicht verfüttern.
- Häufig sind mehrere Mykotoxine nachweisbar. Vielschichtige Krankheitsbilder sind daher möglich.

Typische Einheiten

1 mg = 1.000 μg 1 ppm = 1 mg/kg =1.000 μg/kg

Faustzahl Anteil Mutterkorn: maximal 1 Mutterkorn in einer Handvoll Getreide

Rechtliche Vorgaben

Futtermittelrechtliche **Höchstgehalte** existieren für Aflatoxin B₁ und Mutterkorn. Für diese gilt ein **Verschneidungsverbot** laut Futtermittelverordnung: Falls ein Futtermittel einen in Anhang 1 der Richtlinie 2002/32/EG gelisteten unerwünschten Stoff über dem Höchstgehalt enthält, darf es nicht verkauft, verfüttert oder mit anderen Futtermitteln vermischt werden. Dies gilt für die Futtermittelindustrie genauso wie für Landwirte.

Futtermittelrechtliche **Richtwerte** existieren für DON, ZEA, OTA und die Fumonisine B1 und B2. Diese Richtwerte wurden bei Getreide und Getreideerzeugnissen für die Tierarten mit der größten Toleranz festgelegt und sind daher als <u>Obergrenzen</u> anzusehen. Da Richtwerte keine Höchstgehalte darstellen, können DON, ZEA, OTA und FB1/FB2-belastete Futtermittel mit unbelastetem Getreide verschnitten werden.

Für T2/HT2 existieren Richtwerte für Getreide und Getreideerzeugnisse, die für Futtermittel und Mischfuttermittel bestimmt sind (Empfehlung der KOM 2013/165/EU).

Ab Toxinaufnahmen von 0,03 mg/kg/Körpergewicht/Tag sind Auswirkungen auf Futteraufnahme/Immunsystem beobachtbar.

Höchstgehalte und Richtwerte für die Mykotoxine in Futtermitteln (Richtlinie 2002/32/EG und Empfehlung der EU-Kommission 2006/576/EG)

Mykotoxine mit Höchstgehalten	Zur Tierernährung bestimmte Erzeugnisse	Höchstgehalt in mg/kg für Futtermittel bei 88 % TM
Alfatoxin B₁	Einzelfuttermittel:	0,02
	Mischfuttermittel:	
	für Ferkel	0,005
	Schweine (außer Ferkel)	0,02
Mutterkorn	Einzel- und Mischfuttermittel, die ungemahle-	1.000
	nes Getreide enthalten	
Mykotoxine mit Richtwerten	Zur Tierernährung bestimmte Erzeugnisse	Richtwert in mg/kg für Futtermittel bei 88% TM
Deoxynivalenol	Einzelfuttermittel*:	
(DON)	Getreide und Getreideerzeugnisse**	8
	außer Maisnebenprodukte	
	 Maisnebenprodukte 	12
	Mischfuttermittel:	
	für Schweine	0,9
Zearalenon	Einzelfuttermittel*:	
(ZEA)	 Getreide und Getreideerzeugnisse** 	2
	außer Maisnebenprodukte	
	 Maisnebenprodukte 	3
	Mischfuttermittel	
	 für Ferkel, Jungsauen 	0,1
	 für Sauen und Mastschweine 	0,25
Ochratoxin A	Einzelfuttermittel*	
(OTA)	Getreide und Getreideerzeugnisse**	0,25
	Mischfuttermittel:	
	für Schweine	0,05
Fumonisin B1 +	Einzelfuttermittel*:	
B2	 Mais und Maiserzeugnisse*** 	60
(FB1 + FB2)	Mischfuttermittel:	
	für Schweine	5
T2/HT2	Hafermehlerzeugnisse (Spelzen)	2
Toxine	Sonstige Getreideerzeugnisse	0,5
	Mischfuttermittel mit Ausnahme von Futtermit-	
	teln für Katzen	0,25

^{*}Bei der Verfütterung von Getreide und Getreideerzeugnissen ist darauf zu achten, dass das Tier pro Tag keiner höheren Menge an diesen Mykotoxinen ausgesetzt ist, als bei der ausschließlichen Fütterung eines Alleinfuttermittels. Ein Alleinfuttermittel ist ein Mischfuttermittel, das den täglichen Bedarf deckt.

^{**}Der Begriff "Getreide und Getreideerzeugnisse" umfasst nicht nur die im Katalog der Einzelfuttermittel (Verordnung (EU) Nr. 68/2013) aufgeführten Einzelfuttermittel wie beispielsweise Weizenkleie, sondern auch andere aus Getreide gewonnene Einzelfuttermittel, vor allem Getreide-Grobfutter (beispielsweise GPS, Stroh).

^{***}Der Begriff "Mais und Maiserzeugnisse" umfasst nicht nur die im Katalog der Einzelfuttermittel (Verordnung (EU) Nr. 68/2013) aufgeführten Einzelfuttermittel wie z. B. Maiskleberfutter, sondern auch andere aus Mais gewonnene Einzelfuttermittel, vor allem Maiskornsilage und Mais-Grobfutter (z.B. Maissilage, Maiscobs).

Propionsäurekonservierung von Einzel- und Mischfutter

(BASF 2016)

Getreide inklusive Mais, Raps, Ackerbohnen, Erbsen

Feuchtegehalt im Korn	Getreideganzkorn inkl. Mais¹			Raps, Ackerbohnen, Erbsen ¹		
IIII IXOIII		Konservierungsdauer				
(%)	< 1 Monat	1-3 Monate	3 Monate	6-12 Mo- nate	< 1 Monat	3-6 Monate
	Wonat	Worldte	Wonate	nate	Wonat	Wionate
12	-	-	-		0,35	0,50
14	-	-	-		0,40	0,55
16	0,35	0,45	0,50	0,55	0,45	0,65
18	0,40	0,50	0,55	0,65	0,50	0,75
20	0,45	0,55	0,65	0,75	0,55	0,85
22	0,50	0,65	0,75	0,85	0,60	0,95
24	0,55	0,70	0,85	0,95	0,70	1,05
26	0,60	0,80	0,95	1,05	0,80	1,15
28	0,70	0,90	1,05	1,15	0,90	1,25
30	0,80	1,00	1,15	1,30	1,00	1,35
32	0,90	1,10	1,25	1,45	-	-
34	1,00	1,20	1,35	1,60	-	-
36	1,10	1,30	1,50	1,75	-	-
38	1,25	1,45	1,65	1,90	-	-
40	1,40	1,60	1,85	2,05	-	-

¹Propionsäure - Mindestaufwandmengen in % (= Liter) je 100 kg

Beachte: Bei abgepufferten Säureprodukten (weniger korrosiv, nicht ätzend) und bei Säuregemischen usw. ist die Aufwandmenge höher (siehe Produktinformation)!

Hofeigenes Mischfutter (Haltbarkeit 6-8 Wochen)

Feuchte der Futtermischung/ Einzelkomponenten	Aufwandmenge Propionsäure in I/dt	Aufwandmenge Propionsäuresalz in kg/dt
bis 14%	0,30	0,35
bis 16%	0,40	0,45
16% - 18%	0,50	0,55

Faustzahlen Fütterung und Wasserversorgung

Futterbedarf (Energiebedarf)

Futterart	Ferkel	Zuchtsau	Mastschweine
	(1,4-30 kg LM)	(pro Jahr)	(30-120 kg LM)
Prestarter, kg (MJ ME)	0-2 (0-30)	-	-
Ferkelaufzuchtfutter, kg (MJ ME)	35-40 (450-550)	-	-
Tragefutter, kg (MJ ME)	-	700-850 (7.500-10.000)	-
Säugefutter, kg (MJ ME)	-	350-500 (4.500-6.500)	-
Mastfutter, kg (MJ)	-	-	240-270 (3.000-3.600)

LM, Lebendmasse.

Futteraufwand

Gewichtsbereich, kg	Futteraufwand, 1 :	relativer Verbrauch, %
10-30	1,5-1,9	100
28-40	2,0-2,26	10-15
40-60	2,2-2,6	15-20
60-80	2,6-3,2	15-25
80-120	3,2-3,8	40-50
30-120	2,7-3,1	100
30-140	3,2-3,6	100

Futtertemperatur / Futter-pH

Futtertemperatur > 12 °C / Futter-pH > 4,0

Tränkwasserverbrauch von Schweinen und Durchflussmenge in Abhängigkeit von Lebendmasse und Haltungsabschnitt (verändert, nach DLG-Merkblatt 351)

Haltungsabschnitt	Lebendmasse, kg	Wasserbedarf, I/Tier und Tag	Durchflussmenge (I/min)
Saugferkel	< 8	0,7-1,0	0,4-0,5
Absetzferkel	< 30	1,0-3,0	0,5-0,7
Mastschwein	30-50	3,0-6,0	0,6-1,0
	50-80	5,0-8,5	0,8-1,2
	80-120	8,5-11,0	1,5-1,8
güste und niedertragende Sauen		8,0-12,0	1,5-1,8
hochtragende Sauen		10,0-15,0	1,5-1,8
säugende Sauen		15 + 1,5 l/Ferkel	2,5-3,0
Zuchteber		12-15	1,0-1,5

Somit ergibt sich beim Absetzferkel eine Wassermenge pro kg Futter von 1-3 Liter, beim Mastschwein von 2-3 Liter/kg und bei Zuchtsauen von 5-8 Liter/kg.

Wasserverbrauch

zusätzlich 5% Reinigungswas-		m³ Wasser	pro
ser	Tier	Platz	GV und Jahr
Zuchtsau (inkl. Ferkel)	7-11	7-11	14-22
Ferkel (10-30 kg LM)	0,08-0,12	0,5-0,7	3-4
Mastschweine (30-120 kg LM)	0,8-1,2	2,0-3,5	12-15

LM, Lebendmasse.

Beurteilungswerte für Tränkwasser

(BMEL: Orientierungsrahmen zur futtermittelrechtlichen Beurteilung der hygienischen Qualität von Tränkwasser, Stand 19.07.2019)

Kriterien	Zielbereich	mögliche Folgen bzw. Anzeichen erhöhter Gehalte	Grenzwert Trinkwasser VO
Physikochemische Parame			
pH-Wert ¹	5-9ª	industrielle Verunreinigung, Korrosion	6,5-9,5
Leitfähigkeit (µS/cm)	< 3.000	Schmackhaftigkeit, Durchfälle	2.500
Lösliche Salze, gesamt (g/l)	< 2,5		
Oxidierbarkeit¹ (mg/l)	< 15		5
Chemische Parameter (mg			
Ammonium (NH ₄ ⁺)	< 3	Hinweis auf Verunreinigung	0,5
Arsen (As)	< 0,05	Gesundheitsstörungen, Minderleis- tung	0,01
Blei (Pb)	< 0,1		0,01
Cadmium (Cd)	< 0,02		0,005
Calcium (Ca) ²	500	Funktionsstörungen, Kalk-ablagerungen in Rohren und Ventilen	kein Grenzwert vorhanden
Chlorid (CI-)	< 250 ^a < 500 ^b	Feuchte Exkremente ¹⁾	250
Eisen (Fe)	< 3	Antagonist zu anderen Spurenele- menten, Eisenablagerung in Rohren, Biofilmbildung, Geschmacksbeein- flussung	0,2
Fluor (F)	< 1,5	Störungen an Zähnen und Knochen	1,5
Kalium (K)	< 250 ^a < 500 ^b	Feuchte Exkremente	kein Grenzwert vorhanden
Kupfer (Cu)	< 2	Gesamtaufnahme bei Schafen und Kälbern berücksichtigen	2
Mangan (Mn)	< 4	Ausfällungen im Verteilersystem, Bio- filme möglich	0,05
Natrium (Na)	< 250 ^a < 500 ^b	Feuchte Exkremente	200
Nitrat (NO ₃ -)	< 300 _c < 200 ^d	Risiken für Methämoglobinbildung, Gesamtaufnahme berücksichtigen	50
Nitrit (NO ₂ -)	< 30	Risiken für Methämoglobinbildung, Gesamtaufnahme berücksichtigen	0,5
Quecksilber (Hg)	< 0,003	Allgemeine Störungen	0,001
Sulfat (SO ₄ ²⁻)	< 500	Abführender Effekt	240
Zink (Zn) ³	< 5		kein Grenzwert vorhanden
Keimgehalt			
KBE/ml Gesamtkeimgehalt	< 1.000 < 10.000	bei 37 °C bei 20 °C	
Salmonella, Campylo-bacter, E. coli	frei frei	Durchfall, Austrocknen der Tiere	

^aGeflügel; ^bsonstige Tierarten; ^cruminierende Wiederkäuer; ^dKälber und andere Tierarten; ¹Maß für organische Substanzen im Wasser (< 5 mg/l für eingespeistes Wasser); ² Zusetzen von Leitungen und Nippeltränken; ³Orientierungswert nur bei Herstellung von Milchaustauscher-Tränke. KBE, Kolonienbildende Einheiten.

Checklisten und Beratungsunterlagen

Checkliste "Futterhygiene"

Ziele:

- Vermeidung von Leistungseinbußen, Erkrankungen, Ausfällen
- Reduzierung von Nährstoffverlusten
- Vermeidung von Störungen bei der Futterlagerung, Futteraufbereitung sowie Ausdosierung

Arbeitsschritt 1: Tierbeobachtung

Tierverhalten Fressverhalten	 → normal → unruhig → normal → verhalten 	☐ (Futter, Wasser prüfen)☐☐ (Gesundheitszustand, Stallklima, Futter)☐
Futteraufnahme	→ Sollkurve→ % weniger→ Futterreste	☐ (Futterhygiene, Tiergesundheit, Ration)☐ (Technik)
Gesundheit	→ normal→ Durchfall→ Durchfall, Fieber	☐☐ (Keimgehalte, Mykotoxine, Kotproben)☐ (Blutproben, Mykotoxine)

Arbeitsschritt 2: Futterbeurteilung

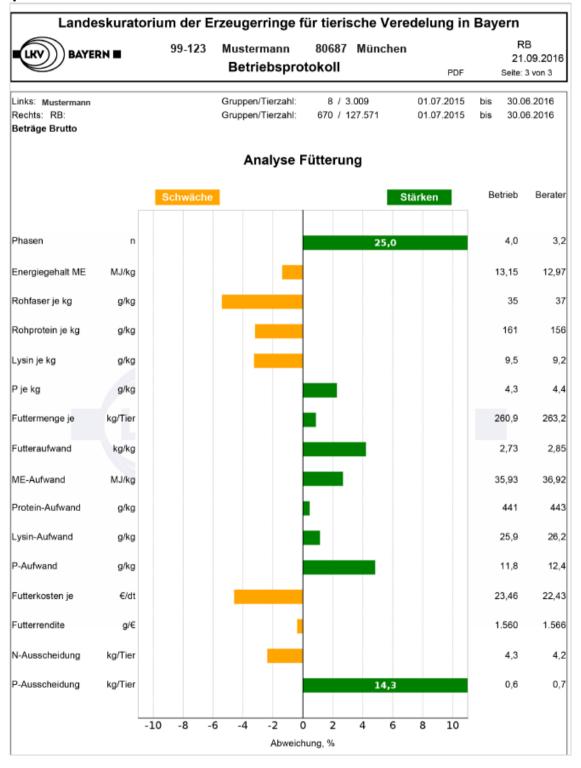
Geruch	→ normal	\Box $ o$ abweichend	□ (Sta	andzeiten, Keimgehalte, pH, T)
• pH (Indikatorpapier)	\rightarrow normal	□ (4,5 – 7)→ zu sa	auer	□ (< 4 Komponenten, Hygiene)
• Einzel- komponenten	Spreu/Sch Handvoll (Kornkäfer → Bruchkörn → Schrumpfl → Geruch m → Geruch sü → Geruch ve → Geruch ra → Verfärbung	Getreide), Nagerkot (Behandlung), Frer er körner uffig, schimmelig ußlich, hefig ach Stall erbrannt nzig	(Reinign ndanteil (Dres (schr (Feu (Keir (Lago (Troc (Fett	e (Nebenprodukte) schtrommel) mal, flach, Fusarien) chte, T, Keime) me, Milben) er) cknung) verdorben) cknung, Schimmelnester) lung, Trocknung, Umlagerung,
 Zukauffutter 	\rightarrow normal	□ → verdächtig	□ (s.o.;	; Lieferanten informieren)

Arbeitsschritt 3: Qualitätssicherung

- Fruchtfolge, Sortenwahl, Bodenbearbeitung, Düngung beachten
- Zeitgerechte, schonende Ernte
- Konservierung und Lagerung optimieren (Reinigung, Desinfektion, Vorschub)
- Futterstrategie / Kontrollmaßnahmen

Checkliste "Tränkwasser für Mastschweine"

Wasser	lst	Soll	J/N ¹	Bemerkung
Wassertemperatur		> 8 °C		besser > 12 °C
Wassermenge				ca. 3-4 l/kg Futter
30 - 50 kg LM		3,0 - 6,0 I/Tag		
50 - 80 kg LM		5,0 - 8,0 I/Tag		je nach Außen-tem- peratur +/-
80 - 120 kg LM		8,5 - 11,0 l/Tag		poratar ·/
Wasserdurchfluss				
30 - 50 kg LM		0,6 – 1,0 l/min		besser Zentralfilter
50 - 80 kg LM		0,8 - 1,2 l/min		als Siebe in Trän-
80 - 120 kg LM		1,5 - 1,8 l/min		kenippel
Anbauhöhe Tränken				
Becken		250-300 mm		
Mastschweine bis 75 kg LM:				abhängig von der Tiergröße,
Tränkenippel (45° / 90°)		650 / 550 mm		verschiedene Höhen
Mastschweine ab 75 kg LM:		750 / 050		ermöglichen
Tränkenippel (45° / 90°)		750 / 650 mm		
Tier-Tränke-Verhältnis		max. 12:1, besser 8-10:1		CC-relevant
Verschmutzung		tägliche Kontrolle		
Wasserleitung		keine "toten" Ecken		
Ungehinderter Zugang zu Tränken für alle Tiere		gegeben		mindestens 1 freie Tränke pro Bucht, CC-relevant
Untersuchung Tränkwas- serqualität		1 x pro Jahr		


¹Sollwert erfüllt: ja/nein; LM, Lebendmasse.

Stärken-/Schwächen-/Profil-Fütterung

LKV Bayern e.V./LFL-Analyse der Schweinefütterung

- Beratungsangebot in Zusammenarbeit von LKV, Fleischerzeugerringen und LfL
- Detaillierte Auswertung der Stärken und Schwächen im Bereich der Fütterung
- Optimierungspotentiale, der Handlungsspielraum und auch die Dringlichkeiten werden sichtbar

Beispiel aus der Schweinemast

Futteruntersuchung

Grundsätzliches zur Futteruntersuchung

Zum systematischen Futtercontrolling gehört eine planmäßige und umfassende Futteruntersuchung, welche die Grundlage einer fundierten Rationsberechnung ist. Die Untersuchung der fertiggemischten Ration dient dem Abgleich mit der Rationsberechnung.

Empfohlener Untersuchungsumfang

Futtermittel	Wichtige Parameter	Analyse	Anzahl pro Jahr
Energiefuttermittel ⁴ (z. B. Weizen)	TM, XP, XF Lys, Met, Thr, Trp Ca, P	Rohnährstoffe ¹ , Aminosäuren ² , Mineralstoffe	1
Nebenprodukte (z. B. Molke)	TM, XP, XF, XA Lys, Met, Thr, Trp, Ca, P, (Na)	Rohnährstoffe ¹ , Aminosäuren ³ , Mineralstoffe	2
Eiweißfutter (z. B. SES)	TM, XP, XF Lys,Met,Thr,Trp, Ca, P	Rohnährstoffe ¹ , Aminosäuren ² , Mineralstoffe	2
Ergänzungsfutter (z.B. Eiweißergänzer)	TM, XP, XF, XA Lys, Met, Thr, Trp Ca, P	Rohnährstoffe ¹ , Aminosäuren ³ , Mineralstoffe	2
Mineralfutter	Ca, P, Lys, Met, Thr, Vit. E, Phytaseaktivität	Mineralstoffe, Aminosäuren³, Vitamine	1
Alleinfutter/Rationen ⁴	TM, XP, XF, XA Lys, Met, Thr, Trp Ca, P	Rohnährstoffe ¹ , Aminosäuren ² , Mineralstoffe	1

SES, Sojaextraktionsschrot; TM, Trockenmasse; XP, Rohprotein; XF, Rohfaser; XA, Rohasche; Lys, Lysin; Met, Methionin; Thr, Threonin; Trp, Tryptophan; Ca, Kalzium, P, Phosphor; Na, Natrium.

Hinweise zur Probennahme

- Ziel der Probenahme ist die Gewinnung einer repräsentativen Futterprobe.
- Damit die zu untersuchende Futterprobe repräsentativ ist, muss bei der Probennahme an mehreren Stellen eine Teilmenge (Einzelprobe) gezogen werden bzw. bei der Ernte von Getreide von jedem Kipper.
- Die Einzelproben werden in einem Behälter gesammelt (Sammelprobe). Aus der Sammelprobe (z.B. 4 kg FM) wird nach gutem Durchmischen die Endprobe (z.B. 0,5 kg FM) entnommen
- Die Menge der Endprobe ist je nach Futtermittelart festgelegt (siehe Tabelle).
- Die Anzahl der Einzelproben, sowie die Menge der Endprobe sind abhängig von der Futtermittelart und dem Umfang der beproben Menge.

Anzahl und Menge für Futterunteruntersuchung im Labor

_	_	
Futtermittel (Beispiele)	Anzahl Einzelprobe für Sammelprobe	Menge Endprobe, kg FM
Heu, Stroh	5	0,5
Silage	5-10	1,0
Trockenfutter (Getreide)	5-10	0,5
Flüssigfutter (Molke)	5	2 Liter ¹

¹Sammelprobe entspricht Endprobe, flüssige Proben nicht reduzieren.

¹Weender/NIR, ²Nasschemie/AminoNIR, ³Nasschemie, ⁴ Zur Absicherung der Futterqualität empfiehlt sich die Untersuchung auf Keimgehalte bzw. Mykotoxine.

Futteruntersuchungskosten im LKV-Labor in Grub (Stand 01/2021)

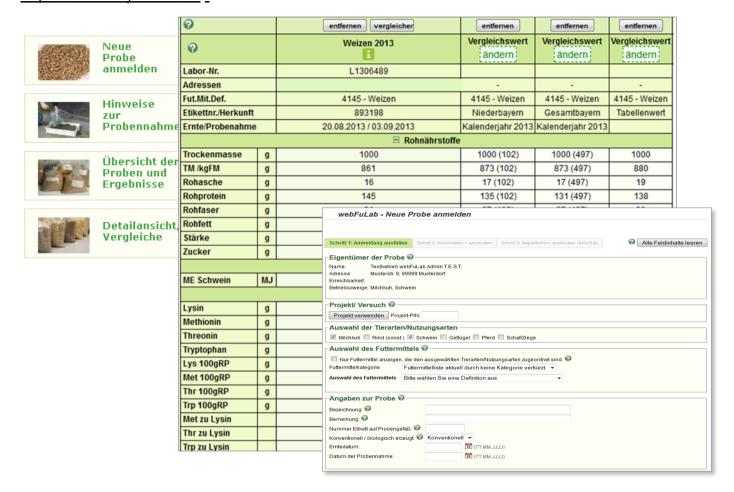
Im LKV-Labor Grub können bayerische Betriebe eine Untersuchung ihrer Futtermittel in Auftrag geben.

Prüfpakete	Preise € zzgl. 19% MwSt.	Preise € zzgl. 19% MwSt.	Bemerkungen Kosten inklusive Probentransport,
	Mitglieder	Nichtmitglieder	-bearbeitung, -verwaltung, Ergeb- nisversand
TM-Bestimmung	12,50	14,50	Trockenmasse-Bestimmung
Nährstoffuntersuchung – NIR	27,00	28,90	TM, Energie, XA, XP, XL, XF und je nach Futtermittel Stärke, Zucker, aNDFom, ADFom, ELOS und Gasbildung
Nährstoffuntersuchung – nasschemisch (für Futtermittel, die nicht mit NIR untersuchbar sind)	49,00	55,00	XA, XP, XL und XF nasschemisch; Untersuchung der z.T. zusätzlich mit ausgegebenen Parameter Stärke, Zucker, ADFom, aNDFom, Gasbildung und ELOS je nach Probenart und Zusammensetzung mittels NIR oder nasschemischer Analyse
Mineralstoffpaket – RFA	23,00	26,00	Kalzium, Phosphor, Natrium, Kalium, Magnesium, Kupfer, Zink, Mangan, Eisen, Schwefel, Chlor
Mineralstoffpaket - ICP-OES	30,00	32,00	Kalzium, Phosphor, Natrium, Kalium, Magnesium, Kupfer, Zink, Mangan, Eisen, Schwefel
Selen	25,00	29,90	verlängerte Untersuchungsdauer
Gärqualität	25,90	29,90	pH-Wert, Milch-, Essig-, Propion- und Buttersäure, Siliererfolg/Gär- qualität anhand der DLG-Punkte
Ammoniak	14,90	18,90	Ammoniak, Anteil Ammoniak- Stickstoff an Gesamt-Stickstoff
Nitrat	9,90	11,90	Nitrat
Säurebindungs- vermögen	17,90	22,00	SBV in mmol pro kg
Aminosäuren – nasschemisch Paket 1	25,00	28,00	Lysin (Lys)
Aminosäuren – nasschemisch Paket 2	55,00	60,00	Lysin (Lys), Methionin (Met), Threonin (Thr), Tryptophan (Trp)
Amino-NIR-Paket			
(Nur für Roggen, Hafer, Erbsen, Rapsextraktions- schrot, Süßlupine, Acker- bohne, Körnermais, So- jakuchen)	9,90	11,90	Lysin (Lys), Methionin (Met), Threonin (Thr), Tryptophan (Trp)

Prüfpakete	Preise € zzgl. 19% MwSt.	Preise € zzgl. 19% MwSt.	Bemerkungen Kosten inklusive Probentransport,
	Mitglieder	Nichtmitglieder	-bearbeitung, -verwaltung, Ergeb- nisversand
Amino-NIR-Paket			Louis (Louis Madeinain (Made)
(Nur für Weizen, Gerste, Triticale, Sojabohnen und Sojaextraktionsschrot)	5,90	7,90	Lysin (Lys), Methionin (Met), Threonin (Thr), Tryptophan (Trp)
Lysin-NIR-Paket			
(Nur für Alleinfuttermittel Schwein)	5,90	7,90	Lysin (Lys)

NIR, Nahinfrarotspektroskopie; RFA, Röntgenfluoreszenzanalyse; ICP-OES, Optische Emissionsspektrometrie mit induktiv gekoppeltem Plasma.

Futterhygieneuntersuchung TGD Bayern


Mykotoxine	je 13,40 €¹	Zearalenon (ZEA), Ochratoxin (OTA), Deoxynivalenol (DON)
Mikrobiologische Beschaffenheit	19,50 €¹	Bakterien, Schimmelpize, Hefen

¹bei Proben in Rahmen eines TGD-Projekts.

Futteruntersuchung mit webFuLab

Der Probeneinsender (Berater, Landwirt, usw.) meldet die Probe online an und kann die Ergebnisse zeitnah online einsehen. *web*FuLab ist im Internet unter https://fulab.bayern.de/nfl zu finden.

Zusätzliche Angebote rund um die Futteruntersuchung:

Probenversand per Post: vorgedruckte Postversandtasche mit Barcode und Innentüte für den Postversand (bestellbar über App oder webFuLab)

LKV-FuLab App (App-Anwendung ergänzend zu webFuLab mit erleichterter Probenanmeldung durch integrierten Barcodescanner und transparente Übersicht des Probenverlaufs sowie Mitteilung von Teilergebnissen)

LfL-webFuLab (Online-Tool zur Probenanmeldung und Verlaufskontrolle, Abruf und Archiv der eigenen Ergebnisse sowie vielfältige Vergleichs- und Auswertungsmöglichkeiten, Abruf von Standard- und Analyse-Mittelwerten von über 450 Futtermitteln basierend auf der LfL-Futtermitteldatenbank)

Schnittstelle zu Zifo2: Datenschnittstelle zwischen webFuLab und dem LfL-Zielwert-Futteroptimierungsprogrammes Zifo2 (Landwirte und LKV-Berater können Untersuchungsergebnisse ohne Tippfehler und Zettelwirtschaft direkt aus webFulab in Zifo2 importieren.)

Futteruntersuchungstoleranzen

Unterscheidung in Stoffgruppen	Zu berücksichtigende Abweichungen	Unterschiede
Futterinhaltsstoffe	Toleranzen deklarierter Werte	Nur ein Wert:
(Rohprotein, Rohfaser, Calcium usw.)		Toleranzen beinhalten Technische Abweichung (Mischvorgang) und Analytische Abweichung
Zusatzstoffe (Aminosäuren, Spurenelemente, Vi- tamine, Enzyme)	Toleranzen (bezogen auf De- klaration) + Analysenspiel- räume (bezogen auf Untersu- chungsergebnisse)	Zwei Werte sind getrennt zu beachten: Toleranzen (Mischvorgang) + Analytische Abweichung

Toleranzen für Futterinhaltsstoffe (Verordnung (EG) Nr. 767/2009, kons. Fassung vom 26.12.2018)

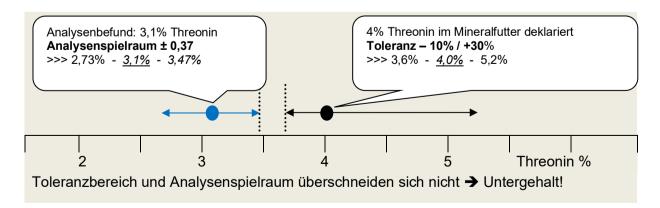
Analytischer Be- standteil	Angegebener Gehalt	Zulá	ässige Abweichung
Standten	v.H.	unterschreitend	Überschreitend
Energie ME		0,4 MJ/kg	0,4 MJ/kg
	unter 8	1,0 Einheiten	1,0 Einheiten
Rohprotein	8 bis unter 24	12,50%	12,50%
	24 und mehr	3,0 Einheiten	3,0 Einheiten
	unter 8	1,0 Einheiten	2,0 Einheiten
Rohfett	8 bis unter 24	12,50%	25,0%
	24 und mehr	3,0 Einheiten	6,0 Einheiten
	unter 8	2,0 Einheiten	1,0 Einheiten
Rohasche	8 bis unter 32	25,0%	12,50%
	32 und mehr	8,0 Einheiten	4,0 Einheiten
	unter 10	1,75 Einheiten	1,75 Einheiten
Rohfaser	10 bis unter 20	17,50%	17,50%
	20 und mehr	3,5 Einheiten	3,5 Einheiten
	unter 1	0,3 Einheiten	0,6 Einheiten
Calcium	1 bis unter 5	30%	60%
	5 und mehr	1,5 Einheiten	3,0 Einheiten
	unter 1	0,3 Einheiten	0,3 Einheiten
Gesamtphosphor	1 bis unter 5	30%	30%
	5 und mehr	1,5 Einheiten	1,5 Einheiten
	unter 1	0,3 Einheiten	0,6 Einheiten
Natrium	1 bis unter 5	30%	60%
	5 und mehr	1,5 Einheiten	3 Einheiten
Wasser	unter 2	Unterschreitung	0,4 Einheiten
(Feuchtigkeit)	2 bis unter 5	ist immer	20%
	5 bis unter 12,5	zulässig	1,0 Einheiten
	12,5 und mehr		8%

Beispiel: 42% XP im SES deklariert: Toleranz ± 3 Einheiten

[→] Deklaration O.K, wenn Analysenergebnis zwischen 39% bis 45% XP

Toleranzen und Analysenspielräume für alle deklarierten Zusatzstoffe (Verordnung (EG) Nr. 767/2009, kons. Fassung vom 26.12.2018)

Angegebener Gehalt		Beispiel Futtermittel für Ferkel je kg	
des Zusatzstoffs [*]	Toleranz	deklariert	Toleranz
unter 0,5 Einheiten (E)	um 40%	0,4 mg Selen	0,24 mg - 0,40 mg (Höchstgehalt 0,5 mg, max. Zulage 0,4 mg)**
0,5 bis unter 1 E	um 0,2 E	0,6 mg Jod	0,4 mg - 1,2 mg***
1 bis unter 500 E	um 20%	50 mg Mangan	40 mg - 80 mg***
500 bis unter 1.000 E	um 100 E	700 mg Vitamin E	600 mg - 1000 mg***
1.000 und mehr E	um 10%	4,8 g Methionin	4,32 g - 6,24 g***


^{*}eine Einheit entspricht 1 mg, 1.000 IE, 1x10⁹ KBE oder 100 Einheiten Enzymaktivität (z. B. FTU) des jeweiligen Zusatzstoffes je kg Futtermittel.

Toleranzen und Analysenspielräume für Aminosäuren (Stand 11.07.2016)

Aminooäuron	Toleranzen	Analysenspielräume (VDLUFA MB III 4.11.1; VDLUFA MB III 4.11.2)		
Aminosäuren	deklarierter Werte	Analysierter Gehalt	zulässige Abweichung ±	
Lysin		0,08 - 0,3%	20% R	
Methionin,	10 % unterschreitend	0,3 - 0,46%	0,06 E	
Cystin, Threonin,		0,46 - 2,85%	13% R	
Tryptophan	30 % überschreitend	2,85 - 3,7%	0,37 E	
		3,7 - 10%	10% R	

R = Relativ Prozentanteil; E= absoluter Wert z.B. ±0.06 oder ± 0.37 Prozenteinheiten.

Beispiel: Anwendung von Toleranz und Analysenspielraum bei Zusatzstoffen Threonin im Mineralfutter

^{**}siehe zulässige Höchstgehalte Seite 37.

^{***}Solange der festgelegte Höchstgehalt eines Zusatzstoffs nicht überschritten wird, kann die Abweichung nach oben vom angegebenen Gehalt bis zur dreifachen Höhe der Toleranz gehen.

Analysenspielräume für Spurenelemente, Vitamine und Enzyme (Stand 01.02.2022)

	Analysierter Gehalt	zulässige Abweichung ±
Eisen	113 - < 371 mg/kg	22% R
	371 - < 510 mg/kg	82 E
	510 - < 10.000 mg/kg	16% R
Kobalt	0,08 - < 26,9 mg/kg	39% R
Kupfer	5 - < 500 mg/kg	22% R
	500 - < 915 mg/kg	110 E
	915 - < 4.900 mg/kg	12% R
/langan	22,0 - < 3.200 mg/kg	19% R
Zink	18,0 - < 10.000 mg/kg	16% R
od	0,4 - < 46 mg/kg	37% R
	46 - < 113 mg/kg	17 E
	113 - < 149	15% R
Selen	0,1 - < 0,5 mg/kg	50% R
	0,5 - < 0,75 mg/kg	0,25 E
	0,75 - < 13,5 mg/kg	33,3% R
	13,5 - < 20,5 mg/kg	4,5 E
	20,5 - < 76 mg/kg	22% R
itamin A	7.800 - < 100.000 IE/kg	30% R
	100.000 - < 125.000 IE/kg	30.000 E
	125.000 - < 375.000 IE/kg	24% R
	375.000 - < 450.000 IE/kg	90.000 E
	450.000 - < 1.020.000 IE/kg	20% R
itamin D3	1.000 – < 3.080 IE/kg	50% R
	3.080 - < 5.100 IE/kg	1.540 E
	5.100 - < 6.150.000 IE/kg	30% R
itamin E	22,4 - < 120 mg/kg	25% R
	120 - < 188 mg/kg	30 E
	188 - < 10.000 mg/kg	16% R
Phytaseaktivität	595 - < 17.200 U/kg	42 % R
	17.200 - < 26.600 U/kg	7.200 E
	26.600 - < 58.400.000 U/kg	27 % R

Nährstoffbilanzen - Vorgehen bei der Saldierung

Die Nährstoffausscheidungen landwirtschaftlicher Nutztiere bestimmen den Düngewert der Exkremente und beeinflussen damit die Ausbringmengen wirtschaftseigener Düngemittel. Die Nährstoffausscheidungen sind nicht konstant, sondern hängen in erheblichem Maß von der Fütterung und dem Leistungsniveau der Tiere ab. Die ausgeschiedene Harnstoffmenge ist maßgebend für mögliche Verluste an Ammoniak über die Freisetzung in Stall, Lager oder bei der Ausbringung.

<u>Vorgehensweise beim Erstellen einer Nährstoffbilanz für ein Produktionsverfahren in der Nutztierhaltung</u>

Die Nährstoffausscheidungen ergeben sich aus einer Bilanz der mit dem Futter aufgenommenen Nährstoffe und den im Körper angesetzten bzw. den Produkten (z.B. Zuwachs) abgegebenen Nährstoffen. Die Rohproteinmengen werden durch den Faktor 6,25 dividiert, um die entsprechenden N-Mengen zu erhalten.

Berechnungsmodell:

Nährstoffaufnahme über Futter

Nährstoffansatz im Produkt

Nährstoffausscheidung

- Nährstoffaufnahme über Futter, g = Futtermenge, kg x Gehalt im Futter, g/kg
- Nährstoffansatz im Produkt, g = Zuwachs an Lebendmasse, kg x Nährstoffgehalt im Produkt, g/kg

Um ein Fütterungsverfahren einzuordnen, beispielsweise zur Klassifizierung und somit zur Kalkulation der Ausscheidungen für die Düngeverordnung, ist es notwendig, die Futtermengen und den Gehalt an N und P im Futter zu kennen. Mit diesen beiden Angaben kann der Input berechnet werden. Wird vom Input der Ansatz im Tier abgezogen, erhält man die Nährstoffausscheidung. Um in der Schweinefütterung ein Verfahren grob einschätzen zu können, hat es sich bewährt, das sogenannte "Mittlere Mastfutter", d.h. den gewichteten durchschnittlichen Nährstoffgehalt je kg Futter, zu berechnen.

Berechnung des "Mittleren Mastfutters"

Mittlerer Nährstoffgehalt je kg Futter =

Futtermenge Phase 1 x Nährstoffgehalt Futter 1

- + Futtermenge Phase 2 x Nährstoffgehalt Futter 2
- + Futtermenge Phase 3 x Nährstoffgehalt Futter 3

+

/ Gesamtfuttermenge

Beispiel:

24 kg Vormastfutter x 175 g XP/kg Vormastfutter

- + 60 kg Anfangsmastfutter x 165 g XP/kg Anfangsmastfutter
- + 70 kg Mittelmastfutter x 155 g XP/kg Mittelmastfutter
- + 97 kg Endmastfutter x 140 g XP/kg Endmastfutter

/ 251 kg Gesamtfuttermenge

= mittleres Mastfutter von 154 g XP/kg Futter (88% TM)

Im LfL-Programm Zifo2 wird das Mittlere Mastfutter automatisch berechnet und kann somit zur Einschätzung des Fütterungsverfahrens angewendet werden.

Mittlerer Jahresbestand

In Bayern werden die Nährstoffausscheidungen auf den "Mittleren Jahresbestand" bezogen. Dieser berechnet sich bei Tieren, welche nur einen Teil des Jahres gehalten werden (z.B. Mastschweine), wie folgt:

Mittlerer Jahresbestand = Anzahl der Tiere x Haltungsdauer in Tagen / 365 Tage Beispiel - Schweinemast: (1.000 Mastschweine x 115 Tage + 1.000 Mastschweine x 112 Tage +

980 Mastschweine x 96 Tage) / 365 Tage = 880 Mastschweine Mittlerer Jahresbestand

Stallsaldierung

Neben der Nährstoffbilanzierung auf Basis des Einzeltieres ist eine Betrachtung der Nährstoffflüsse auf Stallebene für die Beurteilung des Anfalls an N und P zu empfehlen. Dies erlaubt die Plausibilisierung der verschiedenen Möglichkeiten der nährstoffreduzierten Fütterung.

Seit Inkrafttreten der Neufassung der **T**echnischen **A**nleitung zur Reinhaltung der Luft (TA Luft) am 01. Dezember 2021 sind Betriebe, die genehmigungspflichtige Anlagen betreiben (aktuell: "E-Anlagen", Stand 03/2022), d. h. bestimmte Bestandsgrößen überschreiten (siehe Tabelle Folgeseite) dazu verpflichtet eine energie- und nährstoffangepasste Fütterung umzusetzen.

Die energie- und nährstoffangepasste Fütterung ist als "Beste Verfügbare Technik" (BVT) im BVT-Merkblatt für die "Intensivtierhaltung von Schweinen und Geflügel" (EU KOM 2017a) und den aus dem BVT-Merkblatt ausgekoppelten BVT-Schlussfolgerungen (Durchführungsbeschluss EU (2017/302)) beschrieben.


Die sich aus den BVT-Schlussfolgerungen für Tierhaltungsanlagen ergebenden Vorgaben werden in der TA Luft in Punkt 5.4.7.1 umgesetzt und stellen die Genehmigungsgrundlage für die Errichtung und den Betrieb einer nach Bundes-Immissionsschutzgesetz (BImSchG) genehmigungspflichtigen Anlage dar.

Für die Schweinehaltung ist dabei als Richtwert eine **Minderung der Ammoniakemissionen** um **20 Prozent** im Vergleich zu einer Fütterung mit "(nur) einer Phase" (d.h. "Universal- bzw. Standardfütterung") ohne Nährstoffanpassung vorgeschrieben. Hierzu sind maximale Nährstoffausscheidungen bei Schweinen (Tabelle 9) für Stickstoff (N) und Phosphat (P_2O_5) für das jeweilige Produktionsverfahren in der TA Luft festgelegt, die den Anforderungen der BVT Schlussfolgerungen entsprechen.

Zu erreichen sind diese Vorgaben mit der Anwendung eines "stark N-/P-reduzierten Fütterungsverfahren" bei Schweinen.

Die Einhaltung der festgelegten Werte für Stickstoff (N) und Phosphat (P₂O₅) zur Plausibilisierung der BVT im Bereich Futter und Fütterung ist über die Stallbilanz nachzuweisen und der zuständigen Behörde (Kreisverwaltungsbehörde) vorzulegen.

Die LfL bietet zur Erstellung des Nachweises einer stark N-/P-reduzierten Fütterung ein Programm zur Erstellung der Stallbilanz (siehe Abbildung) auf der Homepage an. Das Programm eignet sich auch zur Stallsaldierung bei Geflügelbetrieben. (https://www.lfl.bayern.de/ite/schwein/296596/index.php).

LfL-Stallbilanzprogramm, Quelle: LfL-Institut für Tierernährung und Futterwirtschaft, Grub (ITE)

"Nährstoffaufnahme (Futter) minus Nährstoffansatz (Zuwachs) = Nährstoffausscheidung"

aufgebaut. Der Vergleich des ermittelten Anfalles an Ausscheidungen erfolgt mit den für das jeweilige Produktionsverfahren hinterlegten Mengen für eine stark N-/P-reduzierte Fütterung. Mit diesem Programm kann die Differenz zwischen Input an N bzw. P_2O_5 und Output an N bzw. P_2O_5 hinsichtlich des ausgewählten Produktionsverfahrens kalkuliert und mit den Vorgaben aus der Tabelle 9 (maximale Nährstoffausscheidung) der TA Luft verglichen werden.

Folglich gibt die unter dem Punkt "Output" ausgewiesene Bewertung an, ob die errechneten Ausscheidungen von N und P_2O_5 unterhalb der in der TA Luft für das betrachtete Produktionsverfahren festgelegten maximalen Nährstoffausscheidungen liegen und somit die BVT in Bezug auf Futter und Fütterung eingehalten wurde. Wenn das der Fall ist, dann stellt dies das Programm im Punkt "Bewertung bei beiden betrachteten Nährstoffen" mit einem grün hinterlegten "Ja" dar. Die nährstoffangepasste Fütterung ist für das ausgewählte Produktionsverfahren somit nachgewiesen. Sollte mindestens einer der betrachteten Nährstoffe N und P_2O_5 mit einem rot hinterlegtem "Nein" ausgewiesen werden, so entspricht die Nährstoffausscheidung nicht den Vorgaben, bzw. der BVT.

Aktuell müssen die in der nachstehenden Tabelle unter E aufgeführten Betriebe die Stallsaldierung im Rahmen BVT durchführen. Für Betriebe nach V und G werden diese Maßgaben in Zukunft ebenfalls wirksam.

Kategorisierung von Tierhaltungs-Anlagen nach Bestandsgrößen und Verfahrensart des Genehmigungsverfahrens

Nr.	Anlagenbeschreibung	Verfahrens- art	Anlage gemäß Art. 10 der RL 2010/75/EU
7.1.1.1	40.000 oder mehr Hennenplätze	G	E
7.1.1.2	15.000 bis weniger 40.000 Hennenplätze	V	
7.1.3.2	40.000 oder mehr Mastgeflügelplätze	G	E
7.1.7.1	2.000 oder mehr Mastschweineplätze	G	E
7.1.7.2	1.500 bis weniger 2.000 Mastschweine- plätze	V	
7.1.8.1	750 oder mehr Sauenplätze	G	Е
7.1.8.2	560 bis weniger 750 Sauenplätze	V	
7.1.9.1	6.000 oder mehr Ferkelplätze	G	
7.1.9.2	4.500 bis weniger als 6.000 Ferkelplätze	V	

Auszug aus Anhang 1 der 4. BlmschV, Quelle: 4. BlmschV; V - vereinfachtes Verfahren, G - "großes Verfahren" mit Öffentlichkeitsbeteiligung; E - genehmigungspflichtig gemäß IE-Richtlinie

Nährstoffgehalte bei unterschiedlichen Fütterungsverfahren

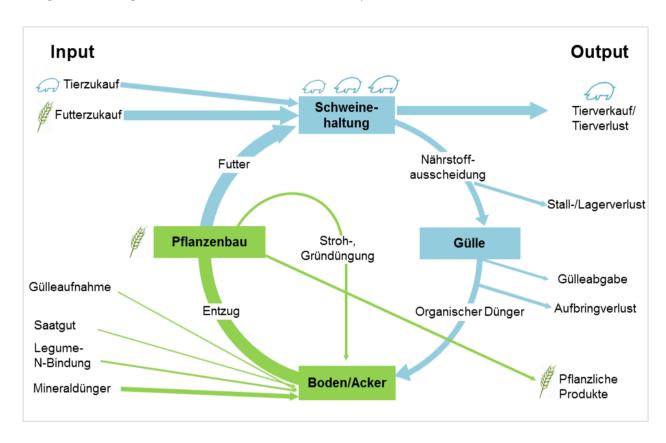
Unterstellte Nährstoffgehalte im Futter bei den Fütterungsverfahren Universalfutter, N-/P-reduziert, stark N-/P-reduziert und sehr stark N-/P-reduziert (je kg Futter, 88% TM), Beispiel Schweinemast mit 850 g täglichen Zunahmen.

Gehalte an bei	Rohprotein g/kg	Stickstoff g/kg	Phosphor g/kg
Universalfutter			
Sauen, Universal	170	27,2	5,5
FAZ ab 8 kg LM, Universal	190	30,4	5,5
Mast 28 - 40 kg LM	175	28,0	5,3
Mast 40- 118 kg LM	170	27,2	5,0
N-/P-reduziert			
Sauen, laktierend	170	27,2	5,5
Sauen, tragend	140	22,4	4,5
FAZ I bis 15 kg LM	185	29,6	5,5
FAZ II ab 15 kg LM	180	28,8	5,3
Mast 28 - 40 kg LM	175	28,0	5,0
Mast 40 - 70 kg LM	170	27,2	4,5
Mast 70 - 118 kg LM	160	25,6	4,5
stark N-/P-reduziert			
Sauen, laktierend	165	26,4	5,0
Sauen, tragend	135	21,6	4,3
FAZ I bis 15 kg LM	180	28,8	5,3
FAZ II ab 15 kg LM	175	28,0	5,0
Mast 28 - 40 kg LM	175	28,0	4,7
Mast 40 - 65 kg LM	165	26,4	4,5
Mast 65 - 90 kg LM	155	24,8	4,2
Mast 90 - 118 kg LM	140	22,4	4,2
sehr stark N-/P-reduziert			
Sauen, laktierend	160	25,6	4,8
Sauen, tragend	130	20,8	4,1
FAZ I bis 15 kg LM	175	28,0	5,1
FAZ II ab 15 kg LM	170	27,2	4,8
Mast 28 - 40 kg LM	165	26,4	4,4
Mast 40 - 65 kg LM	155	24,8	4,2
Mast 65 - 90 kg LM	140	22,4	4,0
Mast 90 - 118 kg LM	135	21,6	4,0

<u>Quelle</u>: DLG-Merkblatt 418, Leitfaden zur nachvollziehbaren Umsetzung stark N-/P-reduzierter Fütterungsverfahren bei Schweinen; DLG Band 199, Bilanzierung der Nährstoffausscheidungen landwirtschaftlicher Nutztiere, 2. Auflage, 2014, ergänzt 2018. Umrechnung: 1 g P = 2,291 g 2,205.

Standardnährstoffausscheidungen DLG 2014/2019

Produktions- verfahren	Leistung	Fütterungsverfahren	Mittleres Mastfutter (mittlere XP- / P-Gehalte,	Nährstoffausschei- dung		
			g/kg Futter)	pro Tier, kg		
				N	P ₂ O ₅	K ₂ O
Ferkelerzeugun	g					
		Universalfutter	170 / 5,5	27,1	12,6	12,8
	22 verkaufte	N-/P-reduziert	152 / 4,9	24,0	11,1	11,6
	Ferkel	stark N-/P-reduziert	147 / 4,6	23,0	10,2	11,3
		sehr stark N-/P-reduziert	142 / 4,4	22,0	9,6	10,6
		Universalfutter	170 / 5,5	27,3	12,7	12,8
	25 verkaufte	N-/P-reduziert	152 / 4,9	24,1	11,2	11,6
	Ferkel	stark N-/P-reduziert	147 / 4,6	23,1	10,2	11,6
		sehr stark N-/P-reduziert	142 / 4,4	22,1	9,7	10,8
		Universalfutter	170 / 5,5	27,5	12,8	13,1
Ferkel	28 verkaufte	N-/P-reduziert	152 / 4,9	24,2	11,2	11,8
bis 8 kg LM	Ferkel	stark N-/P-reduziert	147 / 4,6	23,2	10,3	11,8
		sehr stark N-/P-reduziert	142 / 4,4	22,2	9,7	11,1
		Universalfutter	170 / 5,5	28,0	13,0	12,5
	31 verkaufte	N-/P-reduziert	152 / 4,9	24,4	11,3	12,1
	Ferkel	stark N-/P-reduziert	147 / 4,6	23,3	10,3	12,1
		sehr stark N-/P-reduziert	142 / 4,4	22,3	9,7	11,3
	34 verkaufte Ferkel	Universalfutter	170 / 5,5	28,2	13,1	12,8
		N-/P-reduziert	152 / 4,9	24,5	11,3	12,3
		stark N-/P-reduziert	147 / 4,6	23,4	10,4	12,3
		sehr stark N-/P-reduziert	142 / 4,4	22,4	9,8	11,6
		Universalfutter	178 / 5,5	39,2	17,1	19,9
	22 verkaufte	N-/P-reduziert	164 / 5,1	35,1	15,4	18,3
	Ferkel	stark N-/P-reduziert	159 / 4,8	33,5	14,1	18,3
		sehr stark N-/P-reduziert	154 / 4,6	31,9	13,2	17,5
		Universalfutter	178 / 5,5	41,1	17,8	21,1
	25 verkaufte	N-/P-reduziert	165 / 5,1	36,8	16,1	19,5
	Ferkel	stark N-/P-reduziert	160 / 4,8	35,0	14,6	19,5
		sehr stark N-/P-reduziert	155 / 4,6	33,4	13,7	18,2
		Universalfutter	179 / 5,5	42,9	18,6	21,3
Ferkel	28 verkaufte	N-/P-reduziert	165 / 5,1	38,4	16,7	20,7
bis 28 kg LM	Ferkel	stark N-/P-reduziert	160 / 4,8	36,6	15,2	20,7
		sehr stark N-/P-reduziert	155 / 4,6	34,8	14,4	19,4
		Universalfutter	179 / 5,5	45,1	19,4	22,8
	31 verkaufte	N-/P-reduziert	166 / 5,1	40,0	17,4	21,9
	Ferkel	stark N-/P-reduziert	161 / 4,8	38,1	15,8	21,9
		sehr stark N-/P-reduziert	156 / 4,6	36,2	14,7	20,5
		Universalfutter	179 / 5,5	46,9	20,2	24,0
	34 verkaufte	N-/P-reduziert	166 / 5,1	41,7	18,0	23,1
	Ferkel	stark N-/P-reduziert	161 / 4,8	39,7	16,3	23,1
		sehr stark N-/P-reduziert	156 / 4,6	37,7	15,2	21,6

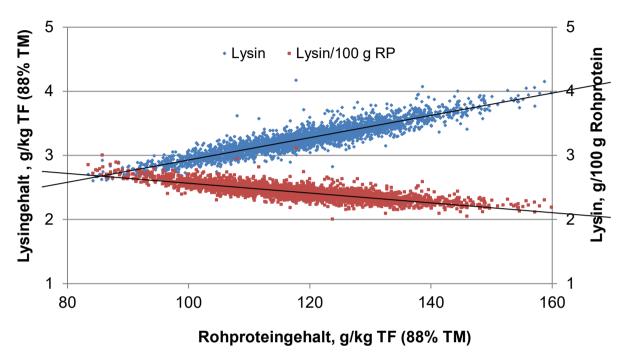

Produktions- verfahren	Leistung	Fütterungsverfahren	Mittleres Mastfutter (mittlere XP- / P-Gehalte,	Nährstoffausscheidung pro Tier, kg		
			g/kg Futter)	N	P ₂ O ₅	K ₂ O
Spezialisierte F	erkelaufzucht					
Ferkel-auf-		Universalfutter	190 / 5,5	0,55	0,21	0,34
zucht	450 g TZ, 7 Durchgänge /	N-/P-reduziert	182 / 5,4	0,51	0,21	0,31
von 8-28 kg LM	Jahr	stark N-/P-reduziert	177 / 5,1	0,48	0,18	0,31
LIVI		sehr stark N-/P-reduziert	172 / 4,9	0,45	0,16	0,30
Ferkel-auf-		Universalfutter	190 / 5,5	0,52	0,21	0,34
zucht	500 g TZ 8 Durchgänge /	N-/P-reduziert	182 / 5,4	0,48	0,18	0,31
von 8-28 kg LM	Jahr	stark N-/P-reduziert	177 / 5,1	0,45	0,16	0,31
LIVI		sehr stark N-/P-reduziert	172 / 4,9	0,43	0,15	0,30
Jungsauen				_	1	1
Aufzucht	180 kg Zuwachs, 2,47 Durchgänge	Universalfutter	175 / 6,0	4,01	1,86	1,85
Adizaon	/ Jahr	N-/P-reduziert	155 / 5,3	3,26	1,71	1,68
Eingliederung	240 kg Zuwachs, 6,00 Durchgänge	Universalfutter	150 / 5,5	2,58	1,42	1,26
Lingilederding	/ Jahr	N-/P-reduziert	135 / 5,0	2,22	1,25	1,08
Schweinemast				_	_	
		Universalfutter	165 / 5,0	4,61	1,97	2,30
	750 g TZ, 2,47 Durchgänge	N-/P-reduziert	159 / 4,6	4,42	1,70	2,23
	/ Jahr	stark N-/P-reduziert	149 / 4,3	3,96	1,56	2,16
		sehr stark N-/P-reduziert	144 / 4,1	3,78	1,42	2,00
		Universalfutter	170 / 5,0	4,48	1,81	2,18
	850 g TZ, 2,73 Durchgänge / Jahr	N-/P-reduziert	164 / 4,5	4,30	1,56	2,11
		stark N-/P-reduziert	153 / 4,3	3,87	1,44	2,05
Mast von 28 -		sehr stark N-/P-reduziert	144 / 4,1	3,49	1,31	1,89
118 kg LM	050 77	Universalfutter	170 / 5,0	4,21	1,70	2,08
	950 g TZ, 2,97 Durchgänge	N-/P-reduziert	164 / 4,5	4,03	1,47	2,01
	/ Jahr	stark N-/P-reduziert	153 / 4,3	3,62	1,33	1,95
		sehr stark N-/P-reduziert	144 / 4,1	3,25	1,21	1,81
	1 050 × T7	Universalfutter	170 / 5,0	3,89	1,56	1,98
	1.050 g TZ, 3,21 Durchgänge	N-/P-reduziert	164 / 4,5	3,72	1,33	1,90
	/ Jahr	stark N-/P-reduziert	153 / 4,3	3,33	1,21	1,84
		sehr stark N-/P-reduziert	144 / 4,1	2,98	1,10	1,71
Jungebermast	<u> </u>		475 / 50	4.00	4 70	0.44
	850 g TZ	Universalfutter	175 / 5,2	4,32	1,79	2,41
	(w:m=50:50) 2,73 Durchgänge	N-/P-reduziert	169 / 4,9	4,15	1,60	2,35
/ Jahr		stark N-/P-reduziert	153 / 4,3	3,55	1,31	2,01
	-	sehr stark N-/P-reduziert	144 / 4,1	3,19	1,19	1,78
	900 g TZ	Universalfutter N-/P-reduziert	166 / 5,0 164 / 4,5	3,98	1,63	2,30
Mast von 28 - 118 kg LM 2,	(w:m=0:100) 2,85 Durchgänge	stark N-/P-reduziert	153 / 4,3	3,81	1,47	2,24 1,91
- · · · · · · · · · · · · · · · · · · ·	/ Jahr	stark N-/P-reduziert	153 / 4,3	3,25	1,19	
	-	Universalfutter	166 / 5,0	2,85 4,66	1,05 1,92	1,67 2,48
	800 g TZ	N-/P-reduziert	164 / 4,5			
	(w:m=100:0) 2,60 Durchgänge	stark N-/P-reduziert	153 / 4,3	4,48 3,85	1,74 1,42	2,42
	/ Jahr	sehr stark N-/P-reduziert	144 / 4,1			
		SEIII SIAIK IN-/P-TEUUZIER	144 / 4, 1	3,47	1,31	1,89

Produktions- verfahren	Leistung	Fütterungsverfahren	Nährstoffaus-schei- dung pro Platz und Jahr, kg		Nährstoffausscheidung je mittlerem Jahresbe- stand, kg			
			N	P ₂ O ₅	N	P ₂ O ₅		
Spezialisierte Ferkelaufzucht								
F		Universalfutter	3,85	1,47	4,52	1,72		
Ferkelaufzucht von	450 g TZ,	N-/P-reduziert	3,57	1,37	4,19	1,61		
8-28 kg LM	7 Durchgänge / Jahr	stark N-/P-reduziert	3,36	1,24	3,94	1,46		
		sehr stark N-/P-reduziert	3,15	1,12	3,70	1,31		
Ferkelaufzucht		Universalfutter	4,16	1,56	4,75	1,78		
von	500 g TZ	N-/P-reduziert	3,84	1,47	4,38	1,68		
8-28 kg LM	8 Durchgänge / Jahr	stark N-/P-reduziert	3,60	1,31	4,11	1,49		
		sehr stark N-/P-reduziert	3,44	1,19	3,92	1,36		
Jungsauen	700 ~ T7		1					
Aufzucht	700 g TZ, 2,47 Durchgänge /	Universalfutter	9,90	5,02	12,05	6,10		
	Jahr	N-/P-reduziert	8,06	4,22	9,81	5,13		
Eingliederung	240 kg Zuwachs, 6,00 Durchgänge /	Universalfutter	15,45	8,54	16,44	9,09		
	Jahr	N-/P-reduziert	13,30	7,51	14,15	8,00		
Schweinemast			T	T	T			
	750 77	Universalfutter	11,39	4,83	14,04	5,95		
	750 g TZ, 2,47 Durchgänge /	N-/P-reduziert	10,92	4,17	13,42	5,13		
	Jahr	stark N-/P-reduziert	9,78	3,83	12,05	4,71		
		sehr stark N-/P-reduziert	9,34	3,51	11,50	4,32		
	050 77	Universalfutter	12,23	4,97	15,45	6,28		
	850 g TZ, 2,73 Durchgänge / Jahr	N-/P-reduziert	11,74	4,28	14,83	5,41		
		stark N-/P-reduziert	10,57	3,92	13,34	4,95		
Mast von 28 -		sehr stark N-/P-reduziert	9,53	3,55	12,03	4,48		
118 kg LM	050 77	Universalfutter	12,50	5,04	16,22	6,54		
	950 g TZ, 2,97 Durchgänge /	N-/P-reduziert	11,97	4,33	15,53	5,62		
	Jahr	stark N-/P-reduziert	10,75	3,96	13,95	5,14		
		sehr stark N-/P-reduziert	9,65	3,57	12,52	4,64		
	1 050 a T7	Universalfutter	12,49	5,02	16,57	6,66		
	1.050 g TZ, 3,21 Durchgänge /	N-/P-reduziert	11,94	4,29	15,84	5,69		
	Jahr	stark N-/P-reduziert	10,69	3,89	14,18	5,17		
		sehr stark N-/P-reduziert	9,57	3,53	12,69	4,68		
Jungebermast	<u> </u>	11.2	44 ===	4.00	44.00	0.46		
	850 g TZ (w:m=50:50)	Universalfutter	11,79	4,86	14,90	6,13		
	2,73 Durchgänge /	N-/P-reduziert	11,33	4,35	14,31	5,50		
Jahr	stark N-/P-reduziert	9,69	3,57	12,24	4,53			
		sehr stark N-/P-reduziert	8,71	3,23	11,00	4,08		
	900 g TZ (w:m=0:100)	Universalfutter	10,79	4,26	13,82	5,46		
Mast von 28 - 118 kg LM	2,85 Durchgänge /	N-/P-reduziert	10,35	3,71	13,26	4,75		
. IO NY LIN	Jahr	stark N-/P-reduziert	8,16	3,37	10,45	4,31		
		sehr stark N-/P-reduziert	7,40	3,02	9,48	3,87		
	800 g TZ (w:m=100:0)	Universalfutter	12,12	4,99	15,12	6,23		
	2,60 Durchgänge /	N-/P-reduziert	11,65	4,49	14,54	5,60		
	Jahr	stark N-/P-reduziert	10,01	3,71	12,49	4,63		
		sehr stark N-/P-reduziert	9,02	3,37	11,26	4,20		

Gesamtbetrieblicher Nährstoffkreislauf

Die Betrachtung des gesamtbetrieblichen Nährstoffkreislaufes wird, nicht zuletzt durch die aktuelle Düngegesetzgebung (DüV 2017, StoffBilV 2018), immer wichtiger für schweinehaltende Betriebe. Die Differenz zwischen gesamten Input und Output ergibt den Bilanzwert/-überschuss. Derzeit stehen N und P im Mittelpunkt des Interesses. Die Nährstoffpfade für N und P sowohl für den Input bzw. Output, als auch für die innerbetrieblichen Nährstoffflüsse, werden schematisch dargestellt (Abbildung).

Schematische Darstellung des gesamtbetrieblichen Nährstoffkreislaufs (in Anlehnung an Hülsbergen et al., 1997 und Böswirth, 2017)



Die Stärke der Pfeile weist auf die Bedeutung des jeweiligen Nährstoffpfads hin. In der Regel stellt der Futterzukauf bei schweinehaltenden Betrieben sowohl bei N als auch P den größten Nährstoff-Input-Pfad dar. Die meisten Nährstoffe verlassen über die Tierverkäufe den Betrieb.

Richtwerte für Rohprotein- und Aminosäuregehalte bei Getreide

Mit steigendem Rohproteingehalt im Getreide steigt der Lysingehalt an, da Lysin als Aminosäure ein Bestandteil des Rohproteins ist. Jedoch verschlechtert sich parallel dazu die Eiweißqualität für die Schweinefütterung, da die Lysin-Konzentration im Rohprotein (bezogen auf Lysin je 100 g Rohprotein) linear abnimmt.

Lysingehalt und Lysinkonzentration (g Lysin/100 g Rohprotein) von Winterweizen der Erntejahre 2013-2017 in Bayern, n = 2.445

Aufgrund der negativen Korrelation von Rohproteingehalt und Lysinkonzentration sind hohe Rohproteingehalte im Getreide nicht erwünscht, da die Schweine mit unnötigem Stickstoff belastet werden und dies letztendlich zu erhöhten Stickstoffausscheidungen führt.

Eine Differenzierung der Getreidequalitäten nach deren Verwertungsrichtung (Human- versus Tierernährung) ist unabdingbar. Die Richtwerte für Rohprotein und Lysinkonzentration für die Schweinefütterung sind in folgender Tabelle dargestellt.

Richtwerte für Rohprotein und Lysinkonzentration für Gerste, Triticale und Weizen

Parameter	Einheit	Zielwerte	Einfluss Landwirt/Pflanzenbau
Poharotoin (VD)	a/ka TE1	105 (Gerste, Triticale)	Düngung, Sorte, Ertrag
Rohprotein (XP)	g/kg TF ¹	110 (Weizen)	und Getreideart
Lycinkonzontration		> 3,6 (Gerste)	Düngung, Sorte, Ertrag
Lysinkonzentration im Rohprotein	g Lysin /100 g XP	> 3,2 (Triticale)	und Getreideart
im Konprotein		> 2,8 (Weizen)	und Getreideart

¹TF, Trockenfutter (88% TM).

Die Ziel- und Orientierungswerte Rohprotein wurden so gewählt, dass eine stark N/P-reduzierte Fütterung mit einer getreidebetonten Fütterung erreicht werden kann.

Rund um die Schweinehaltung

Mögliche Mastschweineplätze pro ha bei ausgeglichener Bilanz nach Nährstoffausscheidungen

(Fruchtfolge: Wintergerste, Körnermais, Winterweizen)

Mast von 30-120 kg LM; 850 g TZ, Futteraufwand 2,8 kg/kg; Umtriebe 2,8/Jahr

Stickstoff: Nährstoffvergleich nach Abzug Stall-/Lager und Aufbringverluste (Stand 2019 nach DüV 2017)

Getreide-	N-Abfuhr,	Rohproteingehalt im Mittleren Mastfutter, g/kg TF ¹			
ertrag, dt/ha	ertrag, kg/ha	170 Universal	164 N-/P-red.	154 stark N-/P-red.	144 sehr stark N-/P-red.
50	80	9,0	9,5	10,5	11,7
56	90	10,1	10,7	11,8	13,1
63	100	11,2	11,8	13,1	14,6
69	110	12,3	13,0	14,4	16,0
75	120	13,5	14,2	15,7	17,5
81	130	14,6	15,4	17,0	18,9
88	140	15,7	16,6	18,3	20,4
94	150	16,8	17,8	19,6	21,9
100	160	17,9	18,9	20,9	23,3

¹TF, Trockenfutter (88% Trockenmasse).

+/- 0,1 Umtriebe = +/- 0,8 Mastplätze

Phosphor: Nährstoffvergleich (Stand 2019 nach DüV 2017)

		Phosphorgehalt im Mittleren Mastfutter, g/kg TF ¹			
Getreide- ertrag, dt/ha	P ₂ 0 ₅ -Ab- fuhr, kg/ha	5,0 Universal	4,5 N-/P-red.	4,3 stark N-/P-red.	4,1 sehr stark N-/P-red.
50	40	7,8	9,2	10,0	10,9
56	45	8,7	10,3	11,2	12,2
63	50	9,8	11,6	12,6	13,7
69	55	10,7	12,7	13,8	15,0
75	60	11,7	13,9	15,0	16,3
81	65	12,6	15,0	16,2	17,6
88	70	13,7	16,3	17,6	19,1
94	75	14,6	17,4	18,8	20,4
100	80	15,6	18,5	20,0	21,7

¹TF, Trockenfutter (88% Trockenmasse).

+/- 0,1 Umtriebe = +/- 0,9 Mastplätze

Faustzahlen Haltung

Flächenbedarf (Tierschutz-Nutztierhaltungsverordnung – TierSchNutztV)

Lebendmasse,	Bodenfläche	
kg	Mindestfläche pro Tier, m²	
Ferkel		
> 5-10	0,15	
> 10-20	0,20	
> 20	0,35	
Zuchtläufer/Mastschweine		
> 30-50	0,50	
> 50-110	0,75	
> 110	≥ 1,00	
Tragende Jungsauen in Gruppe	1,85/1,65/1,50 ¹	
Tragende Zuchtsauen in Gruppe	2,50/2,25/2,05 ¹	
Sauen Absetzen bis Besamung	$\geq 5^2$	
Zuchteber	≥ 6	
Deckbucht	≥ 10	
Abferkelbucht	≥ 6,5 ²	

 $^{^{1}}$ in Gruppen mit < 6 / 6-39 / > 39 Tieren; 2 gemäß 7. Änderung TierSchNutztV, nach Datum des Inkrafttretens.

... davon Flächen mit höchstens 15% Schlitzanteil "Liegefläche"

Tragende Jungsauen in Gruppe	0,95 m ²
Zuchtsauen in Gruppe	1,30 m ²
Mastschweine	≥ 50% der Mindestbodenfläche

Spaltenböden

Lebendmasse, kg	Schlitzweite,	Mindest-Auftrittsbreite Betonspaltenboden ¹ ,
a	mm	cm
Saugferkel	11	5
Absatzferkel	14	5
Mast, Läufer	18	8
Sauen, Eber	20	8

¹für andere Spaltenböden: Auftrittsbreite ≥ Schlitzweite.

Empfehlungen Fressplatzbreite¹

Lebendmasse, kg	Fressplatzbreite, cm
bis 25	18
26-60	27
61-120	33
> 120 kg	40
Sauen	≥ 50

¹Empfehlung Fressplatzbreite für wachsende Schweine; laut Ausführungshinweisen zur TierSchNutztV.

Gruppenhaltung

Tragende Sauen	ab dem Absetzen bis 1 Woche vor dem Abferkelter-
	min

Beleuchtung

Beleuchtung	Anforderungen
Stärke, allgemein	≥ 80 Lux
Dauer	≥ 8 h
tageslichtdurchlässige Fläche	3% der Bodenfläche ¹

¹kann unter bestimmten Bedingungen auf bis zu 1,5% verringert werden.

Schadgase¹

Gase	Maximale Werte
Kohlendioxid $(CO_2)^{2,3}$	3.000 ppm
Ammoniak (NH₃)	20 ppm
Schwefelwasserstoff (H ₂ S)	5 ppm

¹an mehreren Stellen im Abteil messen; ²vom Röhrchen weg atmen; ³kein Schadgas, sondern "Zeigergas" für ungleichmäßige/gleichmäßige Durchlüftung.

Sonderbestimmungen/Empfehlungen

Maßnahmen	Vorgaben
Tränken ≤ 12 Tiere/Tränke	
Rohfaser-Tragefutter	> 80 g/kg (100% TM) bzw. > 70 g/kg (88% TM) oder ≥ 200 g/Sau/Tag
Mindestabsetzalter	allgemein 4 Wochen, Rein/Raus 3 Wochen
Beschäftigungsmaterialien	organisch und faserreich ¹

¹gemäß 7. Änderung TierSchNutztV, nach Datum des Inkrafttretens.

Faustzahlen Betriebswirtschaft - Ferkelerzeugung

Betriebswirtschaftliche Bewertung von Leistungsmerkmalen und Faktoransprüchen in der Ferkelerzeugung

Basis:

Im Leistungsbereich von 20 bis 28 aufgezogene Ferkel je Sau und Jahr, ca. 30 kg Ferkelverkaufsgewicht und bei durchschnittlichen Preis-/Kostenansätzen

Einflussfaktoren		Grenzn	utzen
+ 1 aufgezogenes Ferkel	+	46,00 bis 48,60	€ je Sau und Jahr
- 1 % Ferkelverlust	+	8,40 bis 11,60	€ je Sau und Jahr
+ 1 kg Ferkelverkaufsgewicht	+	10,00 bis 13,10	€ je Sau und Jahr
- 1 % Spanferkel	+	6,60 bis 9,60	€ je Sau und Jahr
- 10 % Umrauscher	-	2	Tage ZWZ
	+	0,03	Würfe je Sau und Jahr
	+	12,90 bis 15,50	€ je Sau und Jahr
- 1 mal umrauschen	+	64,30 bis 77,60	€ je Sau und Jahr
- 1 Leertag	+	3,10 bis 3,70	€ je Sau und Jahr
- 1 € je dt Sauenfutter	+	11,90 bis 12,70	€ je Sau und Jahr
- 1 € je dt Ferkelfutter	+	7,00 bis 9,40	€ je Sau und Jahr
0,10 Futterverwertung in der Ferkelaufzucht	+	11,40 bis 16,70	€ je Sau und Jahr
500 6 Baukaatan ia Sauanniata	+	42,50 bis 48,80	€ je Sau und Jahr
- 500 € Baukosten je Sauenplatz	+	2,00 bis 2,30	€ je Ferkel

ZWZ, Zwischenwurfzeit.

Rentabilitätsschwellen in der Ferkelerzeugung¹

Investitionskosten € je produktiver Sau	4.500	5.000	5.500	6.000
Soll-Deckungsbeitrag €/Sau u. Jahr	760	810	860	910
verkaufte Ferkel je Sau u. Jahr	Vollkostendecker Ferkel-Grundpreis € (netto)	Vollkostendecker Ferkel-Grundpreis € (netto)	Vollkostendecker Ferkel-Grundpreis € (netto)	Vollkostendecker Ferkel-Grundpreis € (netto)
18	77,20	79,50	81,80	84,10
19	73,70	75,80	77,90	80,00
20	70,10	72,20	74,30	76,40
21	67,10	69,00	70,90	72,80
22	64,50	66,30	68,10	69,90
23	62,00	63,70	65,40	67,10
24	59,60	61,30	63,00	64,70
25	57,60	59,30	61,00	62,70
26	55,60	57,30	59,00	60,70
27	53,70	55,20	56,70	58,20
28	52,00	53,50	55,00	56,50
29	50,50	52,00	53,50	55,00
30	49,10	50,40	51,70	53,00

¹LfL-Internet-Deckungsbeitragsrechner:

Betrachtungszeitraum 2015-2019, durchschnittliches Leistungsniveau

Abschreibung 4% für Gebäude und bauliche Anlagen, 10% für Technik Innenwirtschaft,

Unterhalt/Versicherung 1% der Brutto-Investitionssumme

Finanzierung: 30% Eigenkapital bei Gebäude und bauliche Anlagen, 40% Eigenkapital bei Technik für Innenwirtschaft,

2,1% Zinsansatz (Eigen- und Fremdkapital)

Lohnanspruch: 16 Akh je Sau, 19,20 € je Akh

Werte ohne Wirtschaftsdüngerwert

Faustzahlen Betriebswirtschaft - Schweinemast

Betriebswirtschaftliche Bewertung von Leistungsmerkmalen und Faktoransprüchen in der Schweinemast

Basis:

Mast von ca. 30 bis 120 kg LM, 700-850g Tageszunahme, 55% - 60% Muskelfleischanteil bei durchschnittlichen Preis-/Kostenansprüchen

	Einflussfaktoren	Grenznutzen			
+	100 g Tageszunahme	- + - +	0,13 bis 0,15 0,32 bis 0,33 0,03 bis 0,04 2,80 bis 3,30 14,90 bis 17,60	Futteraufwand Umtriebe/Mastplatz und Jahr € Futterkosten je kg Zuwachs € je Mastschwein € je Mastplatz	
-	1 % Totalverlust	+ +	1,10 bis 1,20 2,90 bis 3,50	€ je Mastschwein € je Mastplatz	
-	0,10 Futterverwertung	- + +	0,024 2,10 bis 2,20 5,60 bis 6,20	€ Futterkosten je kg Zuwachs € je Mastschwein € je Mastplatz	
-	1 € je dt Futtermischung	- + +	0,03 2,50 bis 2,70 7,10 bis 7,30	€ Futterkosten je kg Zuwachs € je Mastschwein € je Mastplatz	
+	1 % Magerfleischanteil	+ + + +	0,01 bis 0,03 1,10 bis 3,20 2,80 bis 9,20	€ je kg Schlachtgewicht € je Mastschwein € je Mastplatz	
-	100 € Baukosten je Platz	+	3,43 bis 3,20 8,50 bis 9,80	€ je Mastschwein € je Mastplatz	

Rentabilitätsschwellen in der Schweinemast¹

Investitionskosten € je Stall- platz Soll-Deckungsbeitrag €/Platz		500	500 600		800	
		68	76	87	97	
Tages-zunah- FVW men, 1:		Vollkostendeckender Preis €/kg SG (netto)	Vollkostendeckender Preis €/kg SG (netto)	Vollkostendeckender Preis €/kg SG (netto)	Vollkostendeckender Preis €/kg SG (netto)	
600	3,14	1,71	1,77	1,83	1,89	
650	3,06	1,66	1,72	1,77	1,83	
700	2,98	1,61	1,66	1,72	1,77	
750	2,9	1,56	1,61	1,66	1,71	
800	2,84	1,52	1,56	1,62	1,67	
850	2,77	1,48	1,52	1,57	1,62	
900	2,72	1,45	1,49	1,53	1,57	
950	2,67	1,42	1,46	1,49	1,53	
1000	2,62	1,40	1,43	1,46	1,49	
1050	2,58	1,37	1,40	1,43	1,46	
1100	2,55	1,34	1,37	1,41	1,44	

¹LfL-Internet-Deckungsbeitragsrechner:

Betrachtungszeitraum 2015-2019, Mast von 30 bis 122,5 kg Lebendgewicht, durchschnittliches Leistungsniveau

Abschreibung 4% für Gebäude und bauliche Anlagen, 10% für Technik Innenwirtschaft,

Unterhalt/Versicherung 1% der Brutto-Investitionssumme

Finanzierung: 30% Eigenkapital bei Gebäude und bauliche Anlagen, 40% Eigenkapital bei Technik für Innenwirtschaft,

2,1% Zinsansatz (Eigen- und Fremdkapital)

Lohnanspruch: 1 Akh je Mastplatz, 19,20 € je Akh

Ferkelpreis in Abhängigkeit vom Schlachtschweinepreis (37%)

Werte ohne Wirtschaftsdüngerwert

Korrelation zwischen Tageszunahme und Futterverwertung siehe LSQ-Auswertung LKV

Abgrenzung zwischen Landwirtschaft und Gewerbe (§ 51 Bewertungsgesetz)

Vieheinheitenschlüssel:

	Zuchtsauen/Eber Jungsauen über 90 kg	0,33 VE 0,33 VE
	ach erzeugten Tieren/Jahr	·
1	Ferkel bis ca. 12 kg	0,01 VE
1	Ferkel bis ca. 20 kg	0,02 VE
1	Ferkel bis ca. 30 kg	0,04 VE
1	Läufer bis ca. 45 kg	0,06 VE
1	Jungzuchtschwein bis ca. 90 kg	0,12 VE
1	Mastschwein	0,16 VE

Aggregierte Ansätze:

	331-31-3	
1	Zuchtsau + 26 Absetzferkel (bis ca. 12 kg)	0,59 VE
1	Zuchtsau + 24 Ferkel (bis ca. 30 kg)	1,29 VE
1	Zuchtsau + 22 Mastschweine	3.85 VE

Vieheinheitenstaffel:

bis 20 ha LF	max. 10 VE/ha LF
21 - 30 ha LF	max. 7 VE/ha LF
31 - 50 ha LF	max. 6 VE/ha LF
51 - 100 ha LF	max. 3 VE/ha LF
ab 101 ha LF	max. 1,5 VE/ha LF

Gewerbegrenze in der Schweineproduktion in Abhängigkeit von der Flächenausstattung eines Betriebes:

Fläche	Vieheinheiten Grenzwert	Babyferkel- erzeugung	Ferkel- erzeugung	Kombibetrieb		Schweine- mast	Ferkel- aufzucht
ha LF	VE	Zuchtsauen¹	Zuchtsauen ²	Sauen ³	Mastpl. ³	Mastplätze ⁴	Aufzucht- plätze⁵
10	100	169	77	26	204	297	575
15	150	254	116	39	306	446	862
20	200	338	155	52	408	595	1.149
25	235	398	182	62	479	699	1.351
30	270	457	209	71	551	803	1.552
35	300	508	232	78	612	892	1.724
40	330	559	255	86	673	982	1.897
45	360	610	279	94	734	1.071	2.069
50	390	661	302	102	795	1.160	2.241
60	420	711	325	110	857	1.250	2.414
70	450	762	348	117	918	1.339	2.586
80	480	813	372	125	979	1.428	2.759
90	510	864	395	133	1040	1.517	2.931
100	540	915	418	141	1102	1.607	3.103
110	555	940	430	145	1132	1.651	3.190
120	570	966	441	149	1163	1.696	3.276
130	585	991	453	152	1193	1.741	3.362
140	600	1.016	465	156	1224	1.785	3.448
150	615	1.042	476	160	1255	1.830	3.534
160	630	1.067	488	164	1285	1.875	3.621
170	645	1.093	500	168	1316	1.919	3.707
180	660	1.118	511	172	1346	1.964	3.793
190	675	1.144	523	176	1377	2.008	3.879
200	690	1.169	534	180	1408	2.053	3.966
250	765	1.296	593	199	1561	2.276	4.397
300	840	1.423	651	219	1714	2.500	4.828

¹26 Ferkel/Sau, Ferkelverkaufsgewicht bis ca. 10 kg

²24 Ferkel/Sau, Ferkelverkaufsgewicht bis ca. 30 kg

³22 verkaufte Mastschweine/Zuchtsau; 2,8 Umtriebe je Mastplatz

⁴Zukaufsferkel mit bis ca. 30 kg LM; 2,8 Umtriebe je Mastplatz

⁵Verkaufsgewicht der Ferkel bis ca. 30 kg LM; 5,8 Umtriebe je Aufzuchtplatz

Gesetzliche Rahmenbedingungen der Schweinehaltung

Genehmigungspflichtige Anlagenkapazitäten (Zahl der Plätze) für Anlagen zur Schweinehaltung

	<u> </u>						
	4. BlmSchV, An	hang 1, Nr. 7.1,	UVPG, An	lage 1, Nrn. 7.	1–7.11		
Verfahrensart nach Spalte c							
Tierart	Vereinfachtes	Genehmigungs-	UVP	UVP	UVP		
	Verfahren	verfahren nach	standort-	allgemeine	Pflicht ³		
nach § 19 BlmSchG		§10 BlmSchG	bezogene	Vorprüfung ²			
	(ohne Öffentlichkeits- (mit Öffentlich		Vorprüfung				
	beteiligung)	beteiligung)					
Mastschweine 1.500		2.000	1.500	2.000	3.000		
Sauen 560		750	560	750	900		
Ferkel ¹ 4.500 6.000		6.000	4.500	6.000	9.000		

¹getrennte Aufzucht, Tiere mit weniger als 30 kg Lebendmasse.

Eine UVP-(Vor)Prüfungspflicht hat auch Auswirkungen auf das Bauplanungsrecht. So wird nach § 35 (1) Ziffer 4 die Privilegierung für das Bauen im Außenbereich für sogenannte "gewerbliche" Tierhaltung ohne überwiegend eigene Futtergrundlage (siehe § 201 BauGB) verneint, wenn diese der Pflicht zu einer UVP-Vorprüfung oder einer UVP-Prüfung unterliegt. Für diese Fälle wäre dann in der Regel eine Bauleitplanung notwendig.

Auch gemischte Bestände, bei denen die einzelne Tierkategorie unterhalb der Schwellenwerte bleibt, können aufgrund der Summenwirkung ein Verfahren nach BlmSchG § 10 oder 19 bzw. eine UVP- (Vor-)Prüfung auslösen.

GV - Schlüssel je Mittlerem Jahresbestand¹

Niedertragende und leere Sauen, Eber	0,30 GV
Zuchtsau inkl. Ferkel bis 10 kg LM	0,40 GV
Aufzuchtferkel bis 15 kg LM	0,02 GV
Aufzuchtferkel bis 30 kg LM	0,04 GV
Mastschweine 25-110 kg LM	0,13 GV
Mastschweine 25-115 kg LM	0,14 GV
Mastschweine 25-120 kg LM	0,15 GV

¹GV-Schlüssel aus VDI 3894 von 2011. Da es zahlreiche unterschiedliche GV-Schlüssel gibt, wird hier exemplarisch nur ein GV-Schlüssel dargestellt.

Das KTBL bietet unter http://daten.ktbl.de/gvrechner/gvHome.do#start einen GV-Rechner an, mit dem der GV-Besatz berechnet werden kann. Hier kann man entweder die GV-Schlüssel aus Tabellenwerten durch einfache Multiplikation mit Tierplatzzahlen errechnen und die Kategorien aufsummieren oder beispielsweise bei der Schweinemast unter Angabe der Mastabschnitte, der Tiergewichte, der täglichen Zunahmen, der Tierverluste und der Serviceperioden den GV-Besatz betriebsindividue9. Auflagell ausrechnen.

²gekoppelt an ein vereinfachtes Bundesimmissionsschutzverfahren ohne Öffentlichkeitsbeteiligung.

³gekoppelt an normales Bundesimmissionsschutzverfahren mit Öffentlichkeitsbeteiligung.